Excavation of the HK Cavern

Masato SHIOZAWA

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Mathematics and Physics of the Universe, U of Tokyo

Open Hyper-K meeting, January-14-2013

Cavity and Tank Session

- 30 min. Excavation of the Hyper-K cavern SHIOZAWA
- 30 Hyper-K liner and PMT support TANAKA
- 20 Geomagnetic field compensation NAKAYAMA

Contents of this talk

- Baseline design of the cavern
 - Revised cavern analysis results
 - Revised PS anchor design
 - Feasibility study of rock disposal
- Cost estimation will be revised by the end of January
- Summary of other cavern shapes, other site (Mozumi)

Baseline Design

Hyper-K candidate site

- ♦ 8km south from Super-K
 - same T2K beam off-axis angle (2.5 degree)
 - same baseline length (295km)
- 2.6km horizontal drive from entrance

Side view of the site

Rock class model (-370mL, tank floor level)

Model of rock class distribution

-B class (4.5%)

-The rock mass is solid. There are no opening joint and crack

-CH class (71.3%)

-The rock mass is relatively solid. The cohesion of joints and cracks are slightly decreased.

-CM class (24.2%)

-The rock mass is somewhat soft. The cohesion of joints and cracks is somewhat decreased and rock blocks are separated by ordinary hammer blow along the joints.

Ist version document

- Ist version excavation document is ready and available to the working group
 - Summary of geological survey, results of elastic cavern analysis
 - English and Japanese
 - -Posted on the Hyper-KWG page
 - -Home >>Hyper-K Working Group >> Documents >> Engineering Document >> Excavation

Cavern Analysis Overview

- Elastic, static analysis was conduced and reported at the last meeting
 - one calculation for the whole cavern.
 - evaluate the plasticity region based on elastic analysis
 - Mohr-Coulomb's criterion as failure criteria, general (mean) values for Young's modulus
 - design PS anchors, rockbolts, and shotcrete to support the loosened area.
 - elastic limit of the supports themselves not taken into account

NEW

\\//

- Elasto-plastic, static analysis
 - step-by-step calculations for each excavation benches.
- perform calculation even after the stress exceeds the elastic limit.
 - Hoek-Brown's criterion as failure criteria, revised Young's modulus
 - strain softening calculation
 - Designed supports are considered in the calculation
 - elastic limit of the supports also taken into account.

CH class (relatively solid rock mass)

Plasticity region depth~5m PS anchor tension (black is over tension)

Affordable cable tension and plasticity region depth for B and CH class.

CM class (somewhat soft rock mass)

Plasticity region depth~10m

PS anchor tension (black is over tension)

- Affordable cable tension and plasticity region depth even for CM class.
- Need more long anchors than the past elastic analysis.
 - Cost and schedule are to be revised in January.

PS anchor design (B and CH) 水槽空洞断面支保パターン区分

パターン I (B級岩盤)

パターンⅡ (CH級岩盤)

14

PS anchor design (CM)

Study for rock disposal place

- We are planning to stack waste rock at the top of Maru-yama.
- Concern about rock sliding.
- Feasibility study was done.

Study for rock disposal place

Analysis results is encouragingNeed geological survey data in future

Other cavern shapes, site

Comparison of the Hyper-K Cavern from Various View Points

Cavern Type		Multiple Domes	Single Tunnel	Two Parallel Tunnels
Construction Period & Cost		×	0	0
Early Observation Startup		Δ	Δ	0
Observation during Maintenance		0	×	0
Cost Performance of Detector Tank		×	0	Δ
Cavern Stability		Ø	0	0
Total Evaluation		×	Δ	0
Size of one Cavern (m)	Height	60.0	54.0	54.0
	Width	Ф60	48.0	48.0
	Length		500	250
Vertical Cross Section Area (m ²)		3,368	2,076	2,076
Volume of one Cavern (m ³)		152,600	1,038,000	519,000
Required No. of Caverns		7	1	2
Total Volume of Caverns (m ³)		1,068,200	1,038,000	1,038,000

NNN05 Aussois, Savoie, France 7-9 April 2005

M ITSUI K NZOKU

Different tunnel shape

We are interested in the tunnel w/ vertical straight wall for various reasons, but the analysis shows negative...

- Displacement: B-2cm, CH-17cm, CM-100cm
- PS anchor tension in CM exceeds the limit.
- Plasticity region depth is too deep to treat in CM.
 - Looks impossible to excavate the straight wall cavern in the candidate site. → Egg-shaped tunnel as a baseline design

West Mozumi

- Overburden >700m
 - CR muon rate is about twice of SK. $\leftarrow \rightarrow 10 \times SK$ at Tochibora site
- Geological information not available
 - No info. on rock mass class, in-situ rock stress
 - No show stopper but need survey (money)
- Water source to be identified.
- Nationally-owned land (need confirmation)
- Tunnels for access and waste rock transportation
 - Can we use the existing Atotsu tunnel? or need new tunnels to avoid interference w/ other projects?
- Rock disposal place to be identified.
- Need to check impact of HK construction on SK, KamLAND, GW...

Summary

- Detailed cavern analysis has been completed.
 - The cavern construction is feasible.
 - Egg-shape cross section, Design of supports was made.
 - The study shows that the the rock quality is essential for construction cost and period. Final tuning of the shape and size might be necessary when more data become available.
- Estimation of cost and construction period to be revised in a month.
- V2 document is to be prepared.