Supernova Relic Neutrino Search with Hyper Kamiokande

Takatomi Yano (Okayama Univ.) for HK-Astro WG

2nd Open Meeting for Hyper Kamokande

14th January 2013. At Kavli IPMU, Tokyo Univ.

SN1987a Credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; Optical: NASA/STScI/CfA/P.Challis

Motivation of this analysis

Motivation

To study the effect of the location (depth) on SRN search with HK.

(Muon flux ×1, ×3, ×5, ×7 and ×10 cases)

Contents

SRN search with Hyper Kamiokande.
 SRN search with HK + Gd.

Current Status of SRN Search with SK

Supernova Relic Neutrino is diffused neutrino background from supernovae > ~Mpc.
Recent SRN search was done with single positron tag analysis.
(K.Bays et al., Phys.Rev.D85, 052007 (2012))
• SRN Flux < 1.7× LMA Flux (90%CL)</p>

A new spallation likelihood cut (**Relic spacut**) was applied.

Relic spacut

Negligible spallation events are left after relic spacut. Remaining backgrounds are from neutrinos.

- Solar neutrinos (will be reduced by solar directional cut)
- Atmospheric NC, ν_{e} and ν_{μ} CC

Effect of more muons

- For SRN study, Likelihood threshold is not changed.
- It retains same spallation reduction efficiency.
 = Negligible spallation events after spacut.
- But it reduces the signal efficiency.

Signal Efficiency	Cosmic	×2	×3	×5	×7	×10
17.5-20MeV	81%	65%	52%	33%	21%	11%
20-26MeV	90%	81%	74%	59%	46%	35%

More cosmic muons, worse signal efficiency

Event Sample and Spectrum Fit

- Event samples are made from SK-II best fit **BG** spectrum and expected **SRN** spectrum (LMA model, Ando et al. 2003) and randomize by Poisson distribution.
- 2. Signal efficiency is considered.

3. The event samples are fitted with these spectra, using MINUIT2 (ROOT).

of SRN Events and Significance

The numbers of observed SRN events (20 - 30 MeV) and

the non-zero significances (n = N_{obs} /[fit error σ]) are shown.

- In $\times 1\,\mu$ case (same rate as SK), the significance will be $\sim 5\,\sigma$ after 5 years, $7\,\sigma$ after 10 years.
- $\ln \times 7\mu$ case, it stays at about 5σ after 10 years.
- The worst case, if only >20 MeV is available for $\times 7 \mu$, it stays at 4σ .
- In most pessimistic model, Cosmic Gas Infall, the n σ will be ~1/6.

Gadolinium option for HK

Adding 0.2% Gadolinium sulfate in HK will reduce the backgrounds significantly by e⁺ + n double tagging. The original idea is for Super Kamiokande (Beacom and Vagins (2004)).

The first study for SK-III was done by Watanabe et. al.(2009).

The study for SK-IV was done by Yano and Yamaguchi (2012 Nov. SK Collab.).

No study for Hyper-K, photo coverage 20% and more μ .

Signal efficiency and BG reduction

Double tagging with Gd(n, γ) greatly reduces the background. Accidental coincidence of background events (spallation etc.) and low-E events (Rn, etc) still exists.

Accidental coincidence = max. BG reduction efficiency

Data samples

Data set : Gd(n, γ) capture events

Super-K IV

• taken at 23th Oct. 2010

Source

- Am/Be + BGO + 0.2% Gd₂(SO₄)₃
- Neutron is tagged by scintillation of gamma:
 - α + Be \rightarrow C^{*} + n, C^{*} \rightarrow C + γ

Data set : Background

Super-K IV

- T2K dummy trigger (±500µsec)
- Run 066412 and Run 066415

These data sets are analyzed for 2 cases: with **normal SK-IV** configuration and with **50% masked SK-IV** (photo coverage 19%, equivalent to SK-II (~ HK)).

Gadolinium events and BG

Energy spectrums of Gd(n,g) and BG events

Event selection criteria :

- Distance from source center: R < 2 m
- Event time difference from first trigger: $1.7 \mu s < \Delta T < 35 \mu s$
- Goodness, Dirks, Cherenkov like cut

BG Reduction Efficiency

Applying 3.0 MeV threshold, the reduction efficiency 7×10⁻⁵ can be achieved at SK-IV.

At HK, the same reduction efficiency 7×10⁻⁵ will be achieved by increasing the threshold to 3.75 MeV.

Gd in HK

At SK-IV, 92% of Gd(n, γ) events are kept by 3.0 MeV threshold, after R<2.0m selection.

- At masked SK-IV (HK), the Gd(n, γ) events become 52% by 3.75 MeV threshold, after R<2.0m selection.
- Conclusion: BG reduction efficiency is same as SK-IV, but the signal efficiency become $92\% \rightarrow 52\%$.

$\times 7 \mu$ for HK with Gadolinium

- •Considered :
 - Spallation event rate at SK-II solar final sample.
 - ×10 spallation BG for ×7 μ case. (factor ×1.4 for relic spacut)
 - 7×10⁻⁵ reduction by n tagging for accidental coincidence BG.
 - 80% signal efficiency after relic spacut at < 20 MeV.
 - 52% Gd(n, γ) signal efficiency for E >3.75 MeV cut.

$\times 7\mu$ for HK with Gadolinium

(not including Accidental coincidence) = 599 ev. (not including Accidental coincidence) = 543 ev.

At HK+Gd, the SRN signal exceed the cosmic accidental BG at >12 MeV (×1 μ) and at >16 MeV (×7 μ). With SK-IV + Gd, we would see > 10 MeV.

Summary

- The effect of HK location (cosmic muon rate) on SRN search is studied.
- The significance of SRN will be 7σ after 10 years, if the muon rate is same as SK.
- In Tochibora, where the muon rate is $\times 7$ of SK, the significance stays 5σ . (In the worst case, 4σ)
- The Gd option for HK is also studied.
- The effect of photo coverage 20% is studied.
- The signal efficiency become 52% for E>3.75 cut.
- In Tochibora, only >16 MeV can be seen even with Gd.

We, Low-E group, prefer the location with less muon background or HK+Gd for SRN.

Summary

without Gd, 10 years	N_events	nσ
×lμ	276	7
×3µ	244	6
×5µ	217	6
$\times 7 \mu$	190	5
×10µ	171	4
with Gd, 10 years	N_events	N_BG
with Gd, 10 years $\times 1 \mu$	N_events 325	N_BG 599
with Gd, 10 years ×1 μ ×3 μ	N_events 325 262	N_BG 599 574
with Gd, 10 years $\times 1 \mu$ $\times 3 \mu$ $\times 5 \mu$	N_events 325 262 209	N_BG 599 574 543
with Gd, 10 years ×1μ ×3μ ×5μ ×7μ	N_events 325 262 209 209	N_BG 599 574 543 543
<pre>with Gd, 10 years ×1μ ×3μ ×3μ ×5μ ×7μ ×10μ</pre>	N_events 325 262 209 209	<pre>N_BG 599 574 543 543 543</pre>

Appendix

Spectrum Fit (MINUIT2, ROOT)

low angle, 25 bai

*Takaaki Mori, 2011 09 05 BG estimation (with final sample) @Super-K

B.G.: 24.56 events

Gd in HK

Gd events R distribution (>3 MeV)

Efficiency table

Cut条件をSK-IIと同様に保った時のSignal efficiency

Signal Efficiency	Cosmic µ ×1	×2	×3	×5	×7	×10
17.5-20MeV	81%	65%	52%	33%	21%	11%
20-26MeV	90%	81%	74%	59%	46%	35%

80%キープ時の Reduction efficiecny

17.5-20 MeV	$\begin{array}{c} \text{Cosmic} \\ \mu \times 1 \end{array}$	×2	×3	×5	×7	×10
Signal Efficiency	80.2%	79%	78%	78%	79%	77%
Spallation events left	6.6%	7.4%	7.5%	8.8%	9.3%	10.0%

TABLE V. 90 % C.L. flux limit ($\bar{\nu} \text{ cm}^{-2} \text{ s}^{-1}$), $E_{\nu} > 17.3 \text{ MeV}$

Model	SK-I	SK-II	SK-III	All	Predicted	
Gas Infall (97)	<2.1	<7.5	<7.8	<2.8	0.3	0.18
Chemical (97)	<2.2	<7.2	<7.8	<2.8	0.6	0.35
Heavy Metal (00)	<2.2	<7.4	<7.8	<2.8	< 1.8	1.1
LMA (03)	<2.5	<7.7	<8.0	<2.9	1.7	1
Failed SN (09)	<2.4	<8.0	<8.4	<3.0	0.7	0.41
6 MeV (09)	<2.7	<7.4	<8.7	<3.1	1.5	0.88

SRN (16-30MeV) = 209 ev. total BG (16-30MeV) (not including Accidental coincidence)= 543 ev.

Visible energy (MeV)

SRN (16-30MeV) = 209 ev. total BG (16-30MeV) (not including Accidental coincidence)= 543 ev.

×7µ

