Considerations for Optical Calibration at HK

 H. A. Tanaka (IPP/UBC)2nd Opening Meeting for the Hyper-Kamiokande Project

15 January, 2013

Introduction

- "Optical Calibration": understanding the process of Č photon detection
- starts with production of Č photons in water
- ends with absorption of photons
- in water, walls of the detector, PMT . .
- water is the medium/the medium is water:
- induces Č radiation from relativistic charged particles (radiator) \rightarrow index of refraction
- medium through which optical photons pass subject to a variety of optical phenomena
- account for the boundary of the detector
- reflection/absorption of photons off the "black sheet" ($\sim 80 \%$ of surface)
- reflection/absorption of photons on the PMT.

Scattering in water

- "Rayleigh": scattering off local thermal fluctuations in the medium
- scattering rate determined by n , compressibility, temperature
- "dipole": L $\propto 1 / \lambda^{4}$, isotropic in \perp plane, $\cos ^{2} \theta$ in $\| \mid$ plane
- generic behavior for light scattering off isotropic objects « λ
- "Mie": scattering of particulate contamination/impurities
- depends on size of particles $\left(\sim \mathrm{d}^{6}\right)$ and Fresnel factor

http://omlc.ogi.edu/calc/mie_calc.html

Absorption, Range

- In addition to scattering, Č photons can be absorbed (or re-emitted at a wavelength where it cannot be detected).

All processes are wavelength dependent

- Č photons are emitted with $\sim 1 / \lambda^{2}$ spectrum

- photocathode sensitivity
- rises sharply at 270-290 nm (glass)
- decreases rapidly > 500 nm
- water transparency
- decreases rapidly >500 nm

Relevant wavelengths range is $\sim 300-500 \mathrm{~nm}$

Data/Analysis Strategy

- Generic method:
- Inject light with known properties into the detector
- Simulate the light in Monte Carlo simulation ("MC")
- vary/tune optical parameters in MC until data and MC "agree"
- Variations:
- Light source:
- collimated light source? diffuse "ball"?
- fixed injection point? variable source deployment?
- Analysis:
- what are the "parameters"? (water only? PMT and others?, etc.)
- fit samples or parameters separately or global fit across samples?
- Systematic uncertainties:
- tuning sets the parameters for MC/data agreement
- parameters have uncertainties. What to do with them?

SK Calibration Hardware

T. McLachlan, T2K-SK/SKLB workshop 2009

- Fixed injection points at various points in the detector
- collimated light from $\mathrm{N}_{2} /$ diode laser at various wavelengths
- profile measured directly in the data with bottom PMTs
- Photons undergoing optical phenomena separate in arrival time for PMTs at a fixed height in the detector.

Analysis

T. McLachlan, T2K-SK/SKLB workshop 2009

- At each wavelength:

- Region before reflection peak used to extract water optical parameters (absorption, (a)symmetric scattering) in fit
- Region in reflection peak used to extract PMT reflection parameters (complex index of refraction)

SNO Calibration Hardware

- "Laserball" injects pseudo-isotropic light into the detector
- Laserball moved around within detector to illuminate from different positions (see Szymon's talk)

SNO Optical Environment

- "Richer" optical environment
- "Onion" structure of detector:
- inner $\mathrm{D}_{2} \mathrm{O}$ target volume
- acrylic vessel
- outer $\mathrm{H}_{2} \mathrm{O}$ buffer
- PMT support structure (PSUP)
- Light collectors on PMTs

Analysis:

- Parameters associated with:
- attenuation in $\mathrm{D}_{2} \mathrm{O}$
- attenuation in acrylic vessel
- attenuation in $\mathrm{H}_{2} \mathrm{O}$
- angular response of PMT
- intensity profile of laser ball extracted with a global fit is performed at each wavelength
- Global fit of parameters associated with unrelated optical processes (water vs. reflection, etc.) and nuisance parameters.
B. Moffat, PhD Thesis

Dedicated measurements

- ex-situ measurement of scattering angular distribution at MiniBooNE

- Measurement of black sheet reflectivity within the SK detector
- A program of dedicated/external measurements will help
- construct optical model in the Monte Carlo simulation
- identify features that might be difficult to see in the calibration data

Challenges/Outlook for HK:

- Fortunately, experience gained on SK will gives us a big head start on the optical calibration strategy for HK
- Suggest that we have laser injection points in HK as in SK
- this can be accommodated in advance in the detector design
- Also consider a laser ball-like system to be deployed
- we will almost certainly have a source deployment system at HK
- laser ball should be designed as part of it.
- In preparation:
- consider ex situ measurements to characterize and build optical model for materials introduced into the detector.
- consider advancing the state-of-the-art in analysis techniques
- (more) global fits may allow resolution of more detailed issues (position dependent water quality, etc.)
- MC is a useful tool to get a head start and to define needs

MC chain/Calibration hierarchy

Particle State
Source (e/ γ)
Cosmic μ (+decay e) neutrino (neut, etc.)

Particle tracking
Energy loss
Multiple scattering
Decays
Interactions/production

PMT response

photocathode response
threshold, digitization, etc.

- (My personal view with a strong LBL bias)

MC chain/Calibration hierarchy

PMT response
 photocathode response threshold, digitization, etc.

optical calibration with light source (laser, scintillator, Xe lamp)

- (My personal view with a strong LBL bias)

MC chain/Calibration hierarchy

- (My personal view with a strong LBL bias)

MC chain/Calibration hierarchy

- (My personal view with a strong LBL bias)

MC chain/Calibration hierarchy

Near detector

- (My personal view with a strong LBL bias)

MC chain/Calibration hierarchy

Near detector

- (My personal view with a strong LBL bias)

MC chain/Calibration hierarchy

> ex-situ?

Optical Photon
Č light production photon propagation photosensor optics

PMT response

photocathode response threshold, digitization, etc.
optical calibration with light source (laser, scintillator, Xe lamp)
calibrations with sources (e / γ) cosmic $\mu+$ decay e

Atmospheric neutrino data
Near detector

- (My personal view with a strong LBL bias)

MC chain/Calibration hierarchy

	Test beam
Particle State Source (e / γ) Cosmic $\mu(+d e c a y ~ e)$ neutrino (neut, etc.)	Particle tracking Energy loss Multiple scattering Decays Interactions/production

ex-situ?	ex-situ?
Optical Photon č light production photon propagation photosensor optics PMT response photocathode response threshold, digitization, etc. Optical calibration with light source (laser, scintillator, Xe lamp)	

calibrations with sources (e / γ) cosmic $\mu+$ decay e

Atmospheric neutrino data

Near detector

- (My personal view with a strong LBL bias)

