

Considerations for Optical Calibration at HK

H. A. Tanaka (IPP/UBC)

2nd Opening Meeting for the Hyper-Kamiokande Project 15 January, 2013

Tuesday, January 15, 13

1

Introduction

- "Optical Calibration": understanding the process of Č photon detection
 - starts with production of Č photons in water
 - ends with absorption of photons
 - in water, walls of the detector, PMT . .
- water is the medium/the medium is water:
 - induces Č radiation from relativistic charged particles (radiator) \rightarrow index of refraction
 - medium through which optical photons pass subject to a variety of optical phenomena
- account for the boundary of the detector
 - reflection/absorption of photons off the "black sheet" (~80% of surface)
 - reflection/absorption of photons on the PMT.

Scattering in water

- "Rayleigh": scattering off local thermal fluctuations in the medium
 - scattering rate determined by n, compressibility, temperature
 - "dipole": L $\propto 1/\lambda^4$, isotropic in \perp plane, cos² θ in || plane
 - generic behavior for light scattering off isotropic objects $\ll \lambda$
- "Mie": scattering of particulate contamination/impurities
 - depends on size of particles (~d⁶) and Fresnel factor

http://omlc.ogi.edu/calc/mie_calc.html

Tuesday, January 15, 13

Data/Analysis Strategy

- Generic method:
 - Inject light with known properties into the detector
 - Simulate the light in Monte Carlo simulation ("MC")
 - vary/tune optical parameters in MC until data and MC "agree"
- Variations:
 - Light source:
 - collimated light source? diffuse "ball"?
 - fixed injection point? variable source deployment?
 - Analysis:
 - what are the "parameters"? (water only? PMT and others?, etc.)
 - fit samples or parameters separately or global fit across samples?
 - Systematic uncertainties:
 - tuning sets the parameters for MC/data agreement
 - parameters have uncertainties. What to do with them?

SK Calibration Hardware

- Fixed injection points at various points in the detector
 - collimated light from N₂/diode laser at various wavelengths
 - profile measured directly in the data with bottom PMTs
- Photons undergoing optical phenomena separate in arrival time for PMTs at a fixed height in the detector.

SNO Calibration Hardware

- "Laserball" injects pseudo-isotropic light into the detector
- Laserball moved around within detector to illuminate from different positions (see Szymon's talk)

SNO Optical Environment

- "Richer" optical environment
 - "Onion" structure of detector:
 - inner D₂O target volume
 - acrylic vessel
 - outer H₂O buffer
 - PMT support structure (PSUP)
 - Light collectors on PMTs

Analysis:

- Parameters associated with:
 - attenuation in D₂O
 - attenuation in acrylic vessel
 - attenuation in H₂O
 - angular response of PMT
 - intensity profile of laser ball extracted with a global fit is performed at each wavelength
- Global fit of parameters associated with unrelated optical processes (water vs. reflection, etc.) and nuisance parameters.

B. Moffat, PhD Thesis

Dedicated measurements

• ex-situ measurement of scattering angular distribution at MiniBooNE

- Measurement of black sheet reflectivity within the SK detector
- A program of dedicated/external measurements will help
 - construct optical model in the Monte Carlo simulation
 - identify features that might be difficult to see in the calibration data

J. Kameda

Challenges/Outlook for HK:

- Fortunately, experience gained on SK will gives us a big head start on the optical calibration strategy for HK
 - Suggest that we have laser injection points in HK as in SK
 - this can be accommodated in advance in the detector design
 - Also consider a laser ball-like system to be deployed
 - we will almost certainly have a source deployment system at HK
 - laser ball should be designed as part of it.
- In preparation:
 - consider *ex situ* measurements to characterize and build optical model for materials introduced into the detector.
 - consider advancing the state-of-the-art in analysis techniques
 - (more) global fits may allow resolution of more detailed issues (position dependent water quality, etc.)
 - MC is a useful tool to get a head start and to define needs

Particle State

Source (e/ γ) Cosmic μ (+decay e) neutrino (neut, etc.) Particle tracking

Energy loss Multiple scattering Decays Interactions/production

Optical Photon

Č light production photon propagation photosensor optics

PMT response

photocathode response threshold, digitization, etc.

Particle State

Source (e/ γ) Cosmic μ (+decay e) neutrino (neut, etc.) Particle tracking Energy loss Multiple scattering Decays Interactions/production

Optical Photon

Č light production photon propagation photosensor optics

PMT response

photocathode response threshold, digitization, etc.

optical calibration with light source (laser, scintillator, Xe lamp)

Particle State

Source (e/ γ) Cosmic μ (+decay e) neutrino (neut, etc.) Particle tracking Energy loss Multiple scattering Decays Interactions/production Optical Photon

Č light production photon propagation photosensor optics

PMT response

photocathode response threshold, digitization, etc.

optical calibration with light source (laser, scintillator, Xe lamp)

calibrations with sources (e/ γ) cosmic μ + decay e

	Test beam	ex-situ?	ex-situ?
Particle State Source (e/ γ) Cosmic μ (+decay e) neutrino (neut, etc.)	Particle tracking Energy loss Multiple scattering Decays Interactions/production	Optical Photon Č light production photon propagation photosensor optics optical calibratic (laser, scintillator	PMT response photocathode response threshold, digitization, etc.
	calibrations with sources (e/ γ) cosmic μ + decay e		
Atmospheric neutrino data			
Near detector			