Atmospheric Neutrino Update

Roger Wendell, ICRR 2013.01.14 Hyper-K 2nd Open Meeting, Kashiwa

Introduction

- Atmospheric neutrino and Proton Decay working group (HK-ATMPD)
 Working group activities have now started
 - "ATMPD" is a blanket description for higher energy physics (>100 MeV) that is not specifically from the beam
 - Many of the studies presented at the last meeting are based on analyses at Super-K
 - However, there are still improvements to be made and customizations necessary
 - Plenty of physics work to be done for HK

D Today :

- Improvements to proton decay searches (M.Miura and V.Takhistov)
- \Box Atmospheric v sign discrimination potential (C.Mauger)
- □ Atmospheric v oscillation update (This talk)

The Next Year and Beyond for HK-ATMPD

- Advance and improve physics studies as much as possible
- More of these topics on the horizon
 - Continue existing topics from the LOI
 - **D** BG reduction, efficiency increases for Proton Decay studies
 - Neutrino and antineutrino discrimination methods
 - □ Starting work on other topics
 - □ Sterile oscillations
 - **T**au physics
 - Sensitivity to indirect dark matter
 - □ More PDK modes Your ideas welcome
- Prepare documentation for these studies
 - Important input for the next formal proposal to funding agencies
 - □ Useful for the community at large (LBNE, LBNO efforts)
 - Some cross-pollination between Hyper-K and Super-K is expected (and appreciated)
 - Good advertising for future collaborators

Please let me (or conveners) know what you are interested in working on and we can get you or your students/postdocs started

Atmospheric Neutrino Update

Updates to Neutrino Oscillation Study

- □ Input value of θ₁₃ updated to global best fit after PDG Global fit
 □ sin²2θ₁₃ = 0.10 → 0.098
 □ Does not include latest measurement from Daya Bay (Dec. 2012)
- Oscillation bug
 - **Δ** Antineutrinos were mistakenly assigned oscillation probabilities for δ_{cp} values shifted by π .
 - Fix improves hierarchy sensitivity slightly, degrades CPV sensitivity slightly

In general the conclusions of the atmospheric neutrino study presented at the last open meeting have not changed

Notes about Parameter Values

In the studies below, unless specified otherwise the following inputs have been used to compute sensitivities

Value

 $2.4 \times 10^{-3} \, eV^2$

0.4-0.6

0.025

40 degrees

0.31

 $7.6 \times 10^{-5} \, eV^2$

Normal

sin²(2x)

0.96 - 1.0

0.10

0.85

** MINOS central value from Neutrino 2012: $sin^2(2\theta_{23}) = 0.96$

**

Parameter

 Δm^2_{32}

 $\sin^2\theta_{23}$

 $\sin^2\theta_{13}$

 $\sin^2\theta_{21}$

 Δm_{21}^2

Hierarchy

 δ_{cp}

Hierarchy sensitivity, 10 years of Atmospheric data

- \square Thickness of the band corresponds to uncertainty induced from δ_{cp}
- Weakest sensitivity overall in the tail of the first octant
- Hierarchy sensitivity is improved slightly after update
 - **T**rue for both hierarchies

Octant sensitivity, 10 years of Atmospheric data

\square Best value of δ_{cp} = 40 degrees

 \blacksquare Worst value of δ_{cp} = 140 (260) degrees, for 1st (2nd) octant

□ Change after update is imperceptible

CP-Violation Sensitivity - Exclusion of sin δ_{cp} = 0

- Sensitivity to CP-violation is limited under both hierarchy assumptions but is decreased slightly after the update
- The addition of this information to the beam data does not make much of an impact
- Complementarity of beam and atmospheric samples unaffected after update

Summary

□ HK-ATPMD working group has started

Atmospheric Neutrino sensitivity has been updated, with small impact on the expected sensitivity of Hyper-K

Objective		Normal	Inverted	Comment
Hierarchy	2σ	sin² 2 θ_{23} > 0.96	sin ² 2θ ₂₃ > 0.96	5 years
	3σ	$\sin^2 \theta_{23} > 0.4$	$\sin^2 \theta_{23} > 0.4$	10 years
Octont	2σ	$\sin^2 2\theta_{23} > 0.997$	sin ² 2θ ₂₃ > 0.99	5 years
Octant	3σ	sin² 2 θ_{23} > 0.99	sin ² 2θ ₂₃ > 0.97	5 years

 $\hfill\square$ ν_τ sensitivity studies next time

v_{τ} Events

Energy Threshold: 3.5 GeV

 v_{τ}

Leptons + Hadrons

- Expect ~1 ev/kton/year from oscillations
 - High-energy upward-going events
- Cross section measurement
- Background to θ₁₃ induced oscillation effects in e-like samples
 5-25% of the background

1500

2000

1000

Times (ns)

500

420

Neural Network and Unbinned likelihood fit

Neural Network is built to separate tau events from NC and CC_x events
 Fit normalization of signal and bacground PDFs as a function of of NN output and Zenith Angle

Expectations at Hyper-K

 \square A large number of v_{τ} events are anticipated at Hyper-K

□ Significant appearance signal within a year or two of running

□ In the future:

Investigate cross section measurement possibilities

Investigate removing these events from the oscillation analysis to improve sensitivity

10/5/2012

Supplements

Super-K Results, 2806 days

If no v_{τ} appearance, $\beta = 0$

Data = $\alpha(\gamma) \times bkg + \beta(\gamma) \times signal$

Result	Background	Signal
SK-I	0.95	1.27
SK-II	0.96	1.47
SK-III	0.94	2.16
SK-I+II+III	$\textbf{0.94} \pm \textbf{0.02}$	$\textbf{1.42} \pm \textbf{0.35}$
DIS γ	$\textbf{1.10} \pm \textbf{0.05}$	
□ Tau signa going reg	l clearly appe ion	ears in upward-
□ Tau norm expectati	alization fits on	to 1.42 ×
This correspo	nds to 180.1 ±	- 44.3 (stat) +17.8

(Expected 2.7 σ significance)

Hierarchy sensitivity, 10 years of Atmospheric neutrino data (Previous meeting)

Thickness of the band corresponds to range of δ_{cp} Weakest sensitivity overall in the tail of the first octant

Roger Wendell

Hierarchy sensitivity, 5 years of Atmospheric data

 \blacksquare With 5 years of data 2σ sensitivity to the hierarchy for all values of δ_{cp} and either hierarchy assumption

 \blacksquare 3 σ sensitivity for the second octant of $\theta_{\rm 23}$

Hierarchy sensitivity, 1 year of Atmospheric data

 \blacksquare With 1 year of data 2σ sensitivity to the hierarchy for all values of δ_{cp} and either hierarchy assumption

 \square 3 σ sensitivity for the second octant of θ_{23}

Octant sensitivity, 5 years of Atmospheric data

- \blacksquare With 1 year of data 2σ sensitivity to the hierarchy for all values of δ_{cp} and either hierarchy assumption
- \square 3 σ sensitivity for the second octant of θ_{23}

Fraction of δ_{cp} excluded at 3σ for a fixed value of δ_{cp}

For this particular input, the constraint atmospheric neutrinos can place on dcp is about 50% of

Combination of Beam and Atmospheric Neutrinos : Allowed δ_{cp}

Hierarchy sensitivity : Combination of Beam and Atm. Neutrinos

□ Even under a conservative assumption its possible to achiev ~3σ discrimination or all values of δ_{cp} if the true hierarchy is normal

Roger Wendell

Expected Effects : electron-like samples

- \blacksquare Effect of the θ_{23} octant can be larger than that from $\,\delta_{cp}^{}\,$ on electron appearance
- Effect of the latter is smaller than the expected statistical uncertainty in each bin

Equivalent MC

Octant: Residual at Maximal Mixing ($x - MC^{\theta = 0.5}$)/ sqrt($MC^{\theta = 0.5}$)

Clear differences between the two octants in both the electron and muon samples

 $\theta_{23} = 0.4 \text{ vs. } \theta_{23} = 0.5$ th $\theta_{23} = 0.6 \text{ vs. } \theta_{23} = 0.5$

Overall slightly better sensitivity to the first octant

Zenith Angle Analysis – 480 Bins

Sample Composition

Composition	า (%)	CC v_e	CC anti- v_{e}	CC v_{μ} +anti- v_{μ}	NC
	1R	60.2	10.6	13.5	14.8
v _e like	MR	57.5	17.4	10.7	13.7
Anti-v _e like	1R	55.7	36.6	1.1	6.4
	MR	51.9	20.7	8.2	19.7

Compositio	n (%)	CC v_e	CC anti- v _e	CC v_{μ} +anti- v_{μ}	NC
	1R	0.2	0.08	98.8	0.2
v_{μ} like	MR	2.5	0.3	91.7	4.4

□ Generally the background component of the e-like signal samples is ~20-30%

Muon-like samples on the other hand tend have high-purity and reasonable sensitivity to small effects

Pure oscillation probabilities

□ In the presences of the now large θ_{13} resonant enhancement of the $P(v_{\mu} \rightarrow v_{e})$ oscillation probability occurs via matter interactions

Resonance occurs only for (anti-)neutrinos under the Normal (Inverted) Hierarchy

Effects are roughly halved going to the IH

Roger Wendell

Oscillation probability difference between the $\theta_{\rm 23}$ octants

□ Matter effect gives improved sensitivity

D Octant of θ_{23}

- \rightarrow Asymmetry between neutrinos and antineutrinos
- \rightarrow Magnitude of resonance effect
- \rightarrow Appearance and disappearance interplay

(Trends are Independent of Hierarchy)

Systematic Errors

+% -%

8.5

Flux: Up/Down Ration, Horizontal/ Vertical ratio , K/p
 X-sec: NC/CC ratio

Dectector: Up/Down Energy cal. Asymmetry

D Oscillation Parameters: $1 - \sigma$ allowed atm. 5.4 1.3

$$\beta$$
 = 1.42 ± 0.35 (stat) ^{+0.14} _{-0.12} (sys)

This corresponds to 180.1 ± 44.3 (stat) $^{+17.8}_{-15.2}$ (sys) events a 3.8 σ excess (Expected 2.7 σ significance)

SK Data disfavor 'no tau appearance' at 3.8 σ

R.Wendell (ICRR)

Interaction Mode	NN < 0.5	NN > 0.5	All
$CC v_e$	781.4 (0.40)	381.3 (0.46)	1162.7 (0.42)
$CC \nu_{\mu}$	1070.2 (0.55)	200.2 (0.24)	1270.4 (0.46)
$CC v_{\tau}$	12.4 (0.01)	37.2 (0.04)	49.7 (0.02)
NC	95.2 (0.05)	209.3 (0.25)	304.4 (0.11)

Systematics Uncertainties for v_{τ} normalization			- %
Super-K atmospheric v oscillation			
28 error terms	(expected events)	13.4	14.7
5 error terms	(observed events)	7.9	8.5
Tau neutrino cross section	(expected events)	25.0	25.0
Oscillation parameters	(observed events)	5.4	1.3

A note about tools

Currently the Software WG is working to produce a set of HK-specific tools

- A realistic detector simulation and reconstruction tools are primary goals
- Producing a complete working environment will take time
- □ Some members of this WG are also participating
- □ Up until now HK studies have been done using SK/T2K tools
- We are currently discussing the possibility of making software developed by Super-K and T2K available to Hyper-K members
 - □ Similar agreements exist between Super-K and T2K for example
 - □ In order to make a realistic proposal we need to know if there is a real need exists
 - If you aren't part of SK or T2K but would like to use some software for your studies please let me (or Yokoyama-san, or Shiozawa-san) know
 - □ What you need and why?
 - □ What is the timescale for your study?

Update 20130909

- The 10year HK Sensitivity plots were updated for the Snowmass process and reported here
- □ The result is unchanged, only annotation has been added to the plots for clarity

Hierarchy sensitivity, 10 years of Atmospheric neutrino data

Thickness of the band corresponds to range of δ_{cp} Weakest sensitivity overall in the tail of the first octant

□ Thickness of the band corresponds to the uncertainty from δ_{cp} □ Best value of δ_{cp} = 40 degrees

 \square Worst value of δ_{cp} = 140 (260) degrees, for 1st (2nd) octant