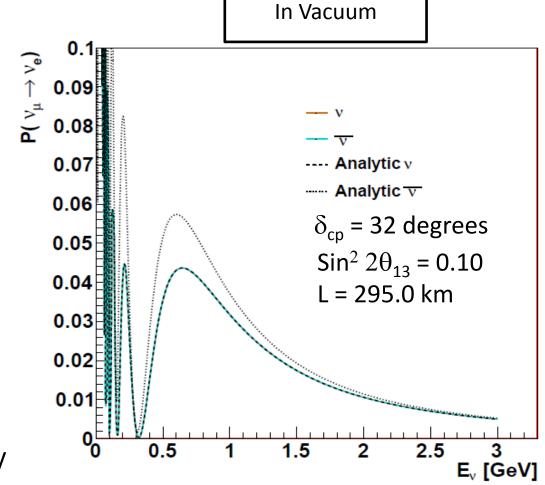
Atmospheric Neutrino Update

Roger Wendell, ICRR 2013.01.14 Hyper-K 2nd Open Meeting, Kashiwa

Introduction

■ Atmospheric neutrino and Proton Decay working group (HK-ATMPD) ■ Working group activities have now started ☐ "ATMPD" is a blanket description for higher energy physics (>100 MeV) that is not specifically from the beam ☐ Many of the studies presented at the last meeting are based on analyses at Super-K ☐ However, there are still improvements to be made and customizations necessary ☐ Plenty of physics work to be done for HK □ Today: ☐ Improvements to proton decay searches (M.Miura and V.Takhistov) \square Atmospheric \vee sign discrimination potential (C.Mauger) \square Atmospheric \vee oscillation update (This talk)

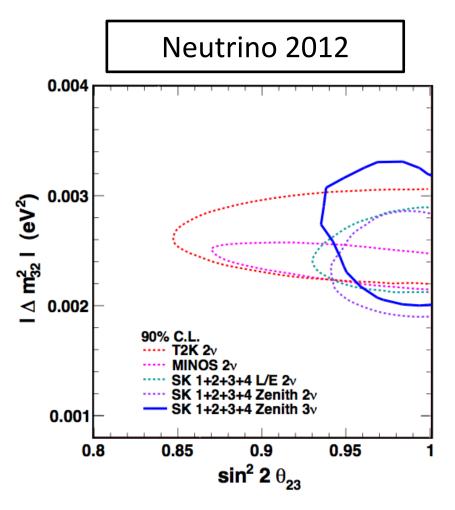
The Next Year and Beyond for HK-ATMPD ☐ Advance and improve physics studies as much as possible ■ More of these topics on the horizon ☐ Continue existing topics from the LOI ■ BG reduction, efficiency increases for Proton Decay studies ■ Neutrino and antineutrino discrimination methods ☐ Starting work on other topics ☐ Sterile oscillations ☐ Tau physics ☐ Sensitivity to indirect dark matter ☐ More PDK modes Your ideas welcome ☐ Prepare documentation for these studies ☐ Important input for the next formal proposal to funding agencies ☐ Useful for the community at large (LBNE, LBNO efforts) ☐ Some cross-pollination between Hyper-K and Super-K is expected (and appreciated) ☐ Good advertising for future collaborators ☐ Please let me (or conveners) know what you are interested in working on and we can


get you or your students/postdocs started

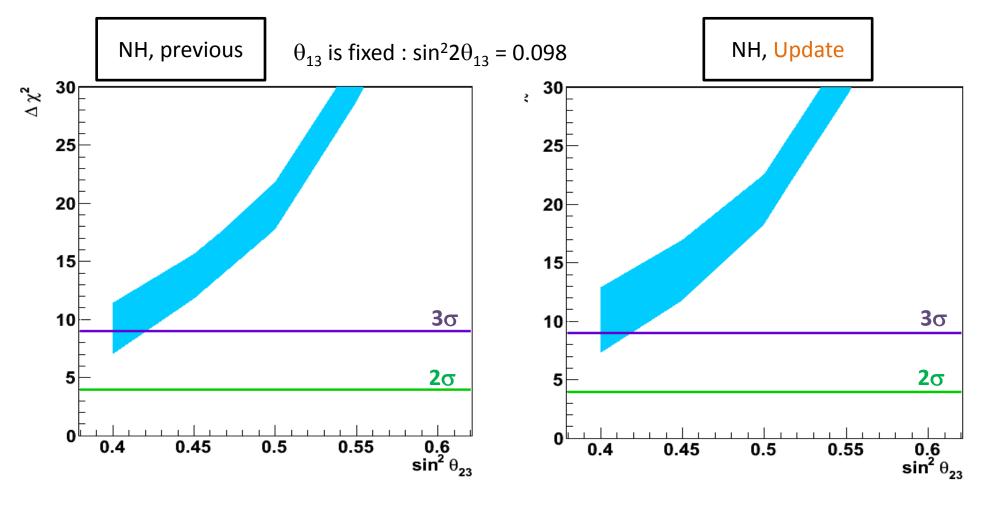
Atmospheric Neutrino Update

Updates to Neutrino Oscillation Study

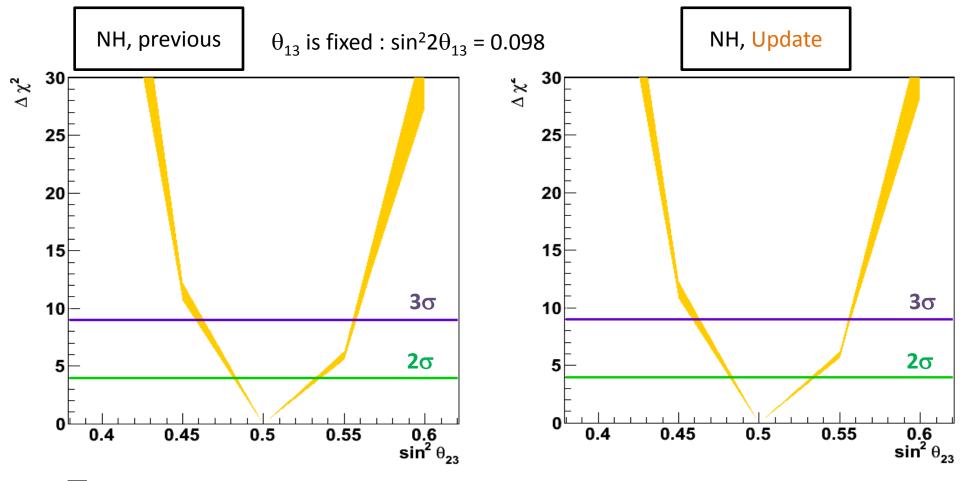
- \blacksquare Input value of θ_{13} updated to global best fit after PDG Global fit
 - $\square \sin^2 2\theta_{13} = 0.10 \rightarrow 0.098$
 - ☐ Does not include latest measurement from Daya Bay (Dec. 2012)
- ☐ Oscillation bug
 - lacktriangle Antineutrinos (only) were mistakenly assigned oscillation probabilities with incorrect values of δ_{co}
 - ☐ Fix improves hierarchy sensitivity slightly, degrades CPV sensitivity slightly


☐ In general the conclusions of the atmospheric neutrino study presented at the last open meeting have not changed

Notes about Parameter Values


☐ In the studies below, unless specified otherwise the following inputs have been used to compute sensitivities

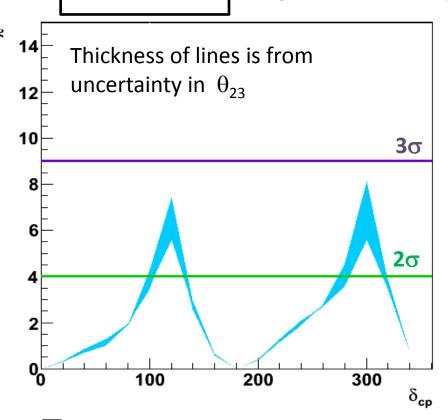
Parameter	Value	sin²(2x)	Comment
Δm_{32}^2	$2.4 \times 10^{-3} \text{eV}^2$		Global Fit
$\sin^2\!\theta_{23}$	0.4-0.6	0.96 - 1.0	**
$\sin^2\theta_{13}$	0.025	0.10	Reactor Data
$\delta_{\sf cp}$	40 degrees		$Min.P(\nu_{\mu}\!\!\rightarrow\!\!\nu_{e})$
$\sin^2\theta_{21}$	0.31	0.85	Global Solar
$\Delta m_{\ 21}^2$	$7.6 \times 10^{-5} eV^2$		Global Solar
Hierarchy	Normal		Assumption

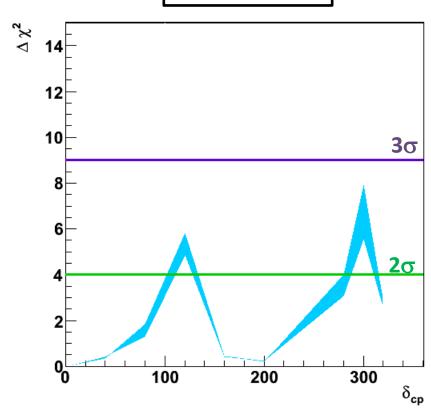

^{**} MINOS central value from Neutrino 2012: $\sin^2(2\theta_{23}) = 0.96$

Hierarchy sensitivity, 10 years of Atmospheric data

- lacksquare Thickness of the band corresponds to uncertainty induced from $\delta_{\rm cp}$
- ☐ Weakest sensitivity overall in the tail of the first octant
- ☐ Hierarchy sensitivity is improved slightly after update
 - ☐ True for both hierarchies

Octant sensitivity, 10 years of Atmospheric data


- \blacksquare Thickness of the band corresponds to the uncertainty from δ_{cp}
- \blacksquare Best value of δ_{cp} = 40 degrees
- \blacksquare Worst value of δ_{cp} = 140 (260) degrees, for 1st (2nd) octant
- ☐ Change after update is imperceptible


CP-Violation Sensitivity - Exclusion of $\sin \delta_{\rm cp}$ = 0

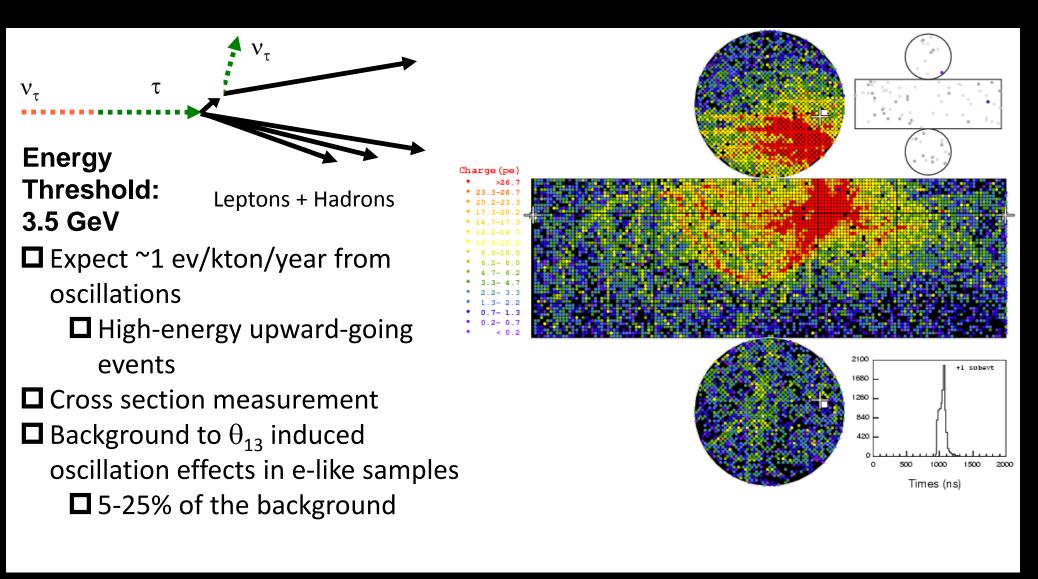
NH, previous

 θ_{13} is fixed : $\sin^2 2\theta_{13} = 0.099$

NH, Update

- ☐ Sensitivity to CP-violation is limited under both hierarchy assumptions but is decreased slightly after the update
- ☐ The addition of this information to the beam data does not make much of an impact
- ☐ Complementarity of beam and atmospheric samples unaffected after update

Summary

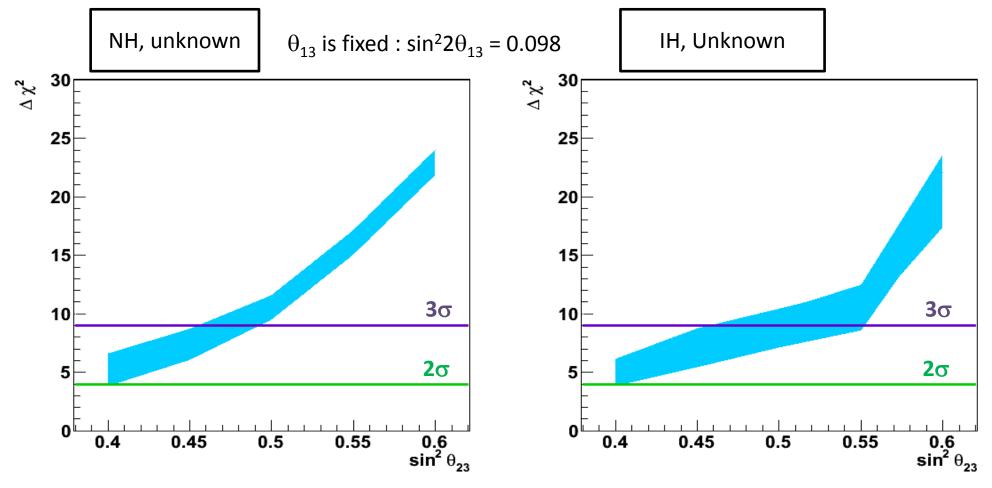

- ☐ HK-ATPMD working group has started
 - Your contributions are welcome
- ☐ Atmospheric Neutrino sensitivity has been updated, with small impact on the expected sensitivity of Hyper-K since the last open meeting

Objective		Normal	Inverted	Comment
Hiorarchy	2σ	$\sin^2 2\theta_{23} > 0.96$	$\sin^2 2\theta_{23} > 0.96$	5 years
Hierarchy	3σ	$\sin^2\theta_{23} > 0.4$	$\sin^2 \theta_{23} > 0.4$	10 years
Octont	2σ	$\sin^2 2\theta_{23} > 0.997$	$\sin^2 2\theta_{23} > 0.99$	5 years
Octant	3σ	$\sin^2 2\theta_{23} > 0.99$	$\sin^2 2\theta_{23} > 0.97$	5 years

- ☐ For the future
 - \square v_{τ} sensitivity studies next time
 - \blacksquare Improvements to this study (e.g. τ background reduction)

Supplements

v_{τ} Events

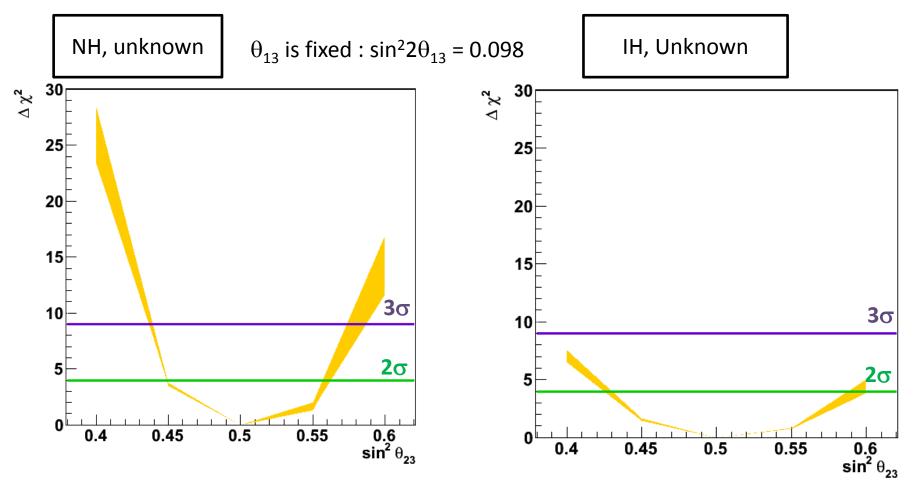

Hierarchy sensitivity, 10 years of Atmospheric neutrino data

(Previous meeting)

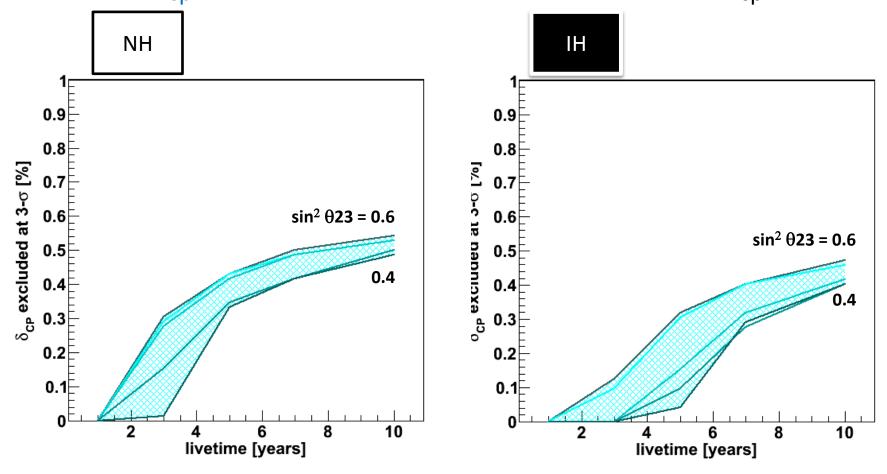
 θ_{13} is fixed : $\sin^2 2\theta_{13} = 0.10$ NH, unknown IH, Unknown 30 30 -NH, $\delta_{cp} = 0$ 25 -IH, δ_{cp} = 0 -NH, $\delta_{cp} = 140$ -IH, $\delta_{cp} = 140$ 20 20 $\Delta \chi^2$ Hierarchy $\Delta\,\chi^2$ Hierarchy 15 3σ 3σ 0.4 0.45 0.55 0.6 $\begin{array}{c} \textbf{0.5}\\ \sin^2\theta_{23} \end{array}$ 0.45 0.55 0.6 $\sin^2 \theta_{23}$

- lacksquare Thickness of the band corresponds to range of δ_{cp}
- ☐ Weakest sensitivity overall in the tail of the first octant

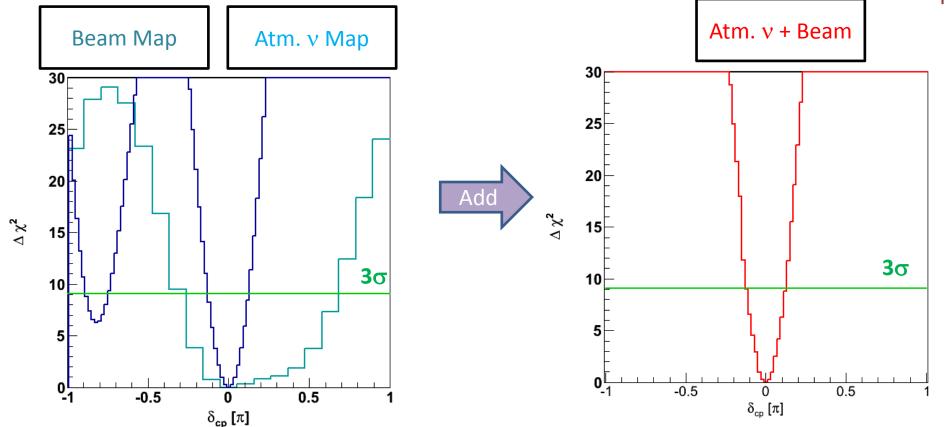
Hierarchy sensitivity, 5 years of Atmospheric data


- \blacksquare With 5 years of data 2σ sensitivity to the hierarchy for all values of $\delta_{\rm cp}$ and either hierarchy assumption
- \blacksquare 3 σ sensitivity for the second octant of θ_{23}

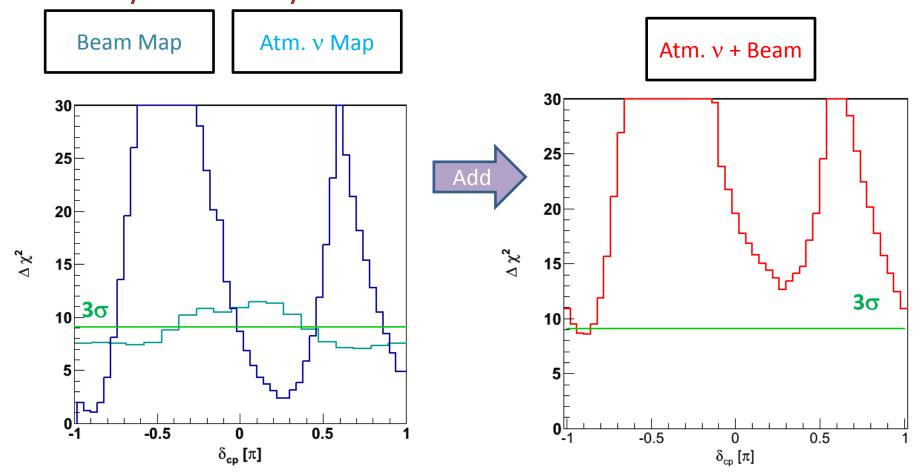
Hierarchy sensitivity, 1 year of Atmospheric data


- \blacksquare With 1 year of data 2σ sensitivity to the hierarchy for all values of δ_{cp} and either hierarchy assumption
- \blacksquare 3 σ sensitivity for the second octant of θ_{23}

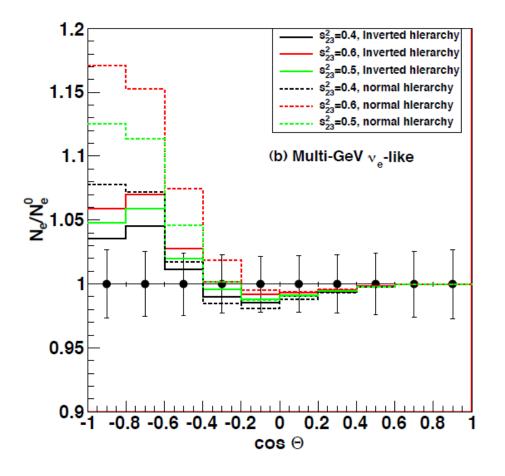
Octant sensitivity, 5 years of Atmospheric data

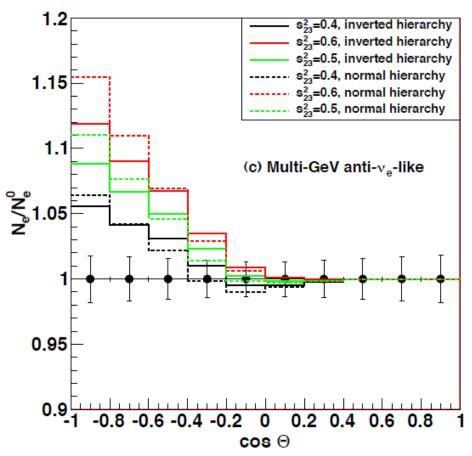

- \blacksquare With 1 year of data 2σ sensitivity to the hierarchy for all values of δ_{cp} and either hierarchy assumption
- \blacksquare 3 σ sensitivity for the second octant of θ_{23}

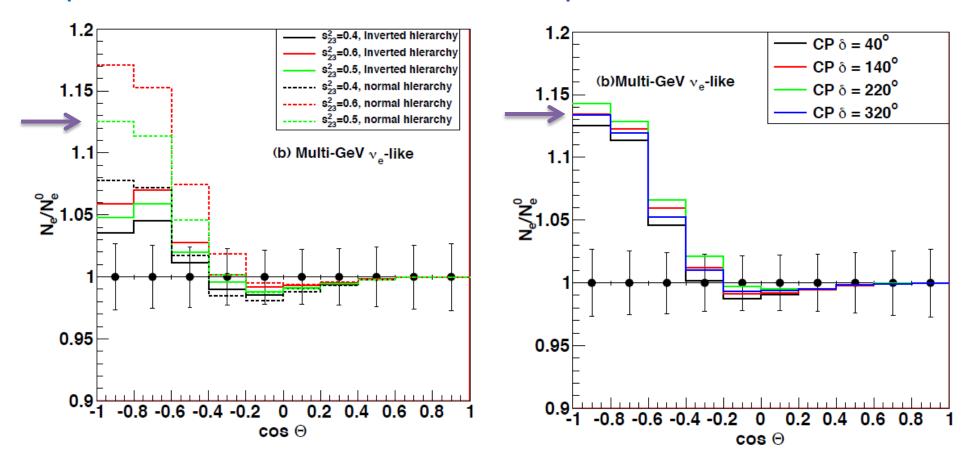
Fraction of $\delta_{\rm cp}$ excluded at 3σ for a fixed value of $\delta_{\rm cp}$


■ For this particular input, the constraint atmospheric neutrinos can place on dcp is about 50% of

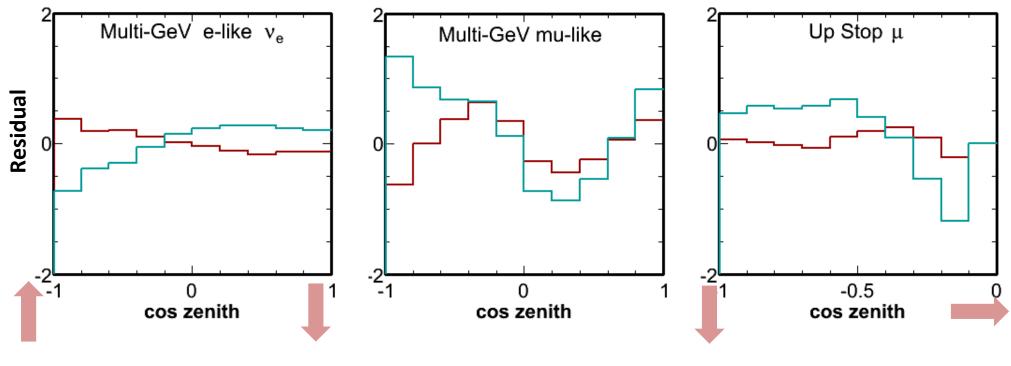
Combination of Beam and Atmospheric Neutrinos : Allowed δ_{cp}


- ☐ Hierarchy is unknown, but NH is true
- \blacksquare True $\delta_{cp} = 0.0$
- \Box True $\sin^2 2\theta_{13} = 0.10$
- \square Maximal mixing , $\sin^2 2\theta_{23} = 1.0$
- \Box Degenerate solution exists at 3σ in the beam only case just add the χ^2 maps
- ☐ In the real world, something more sophisticated is in order


Hierarchy sensitivity: Combination of Beam and Atm. Neutrinos


- ☐ Hierarchy is unknown, but the NH is true
- \Box True sin²2 θ_{13} = 0.10
- \Box Using $\sin^2\theta_{23} = 0.4$
- \blacksquare Even under a conservative assumption its possible to achiev ~3 σ discrimination or all values of δ_{cp} if the true hierarchy is normal

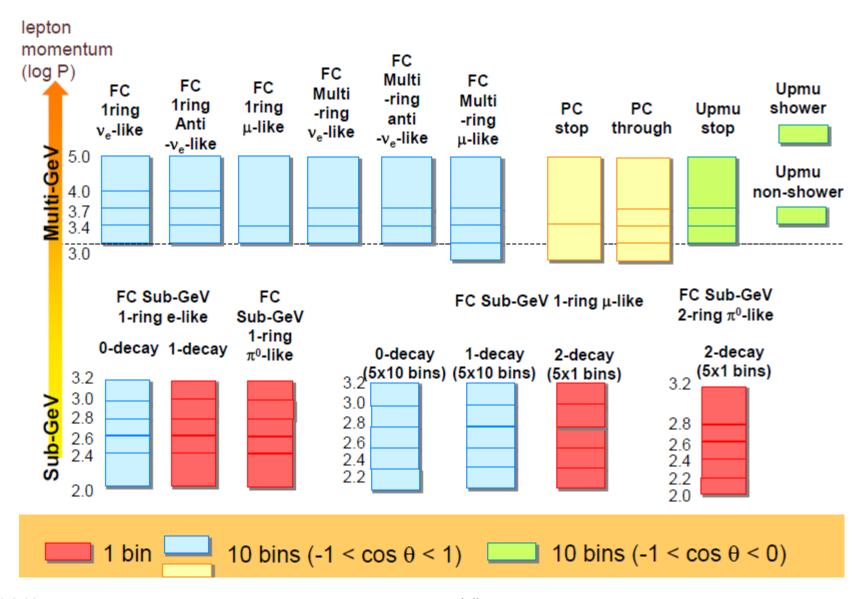
2012.8.22 Roger Wendell 19


Expected Effects: electron-like samples

- \blacksquare Effect of the θ_{23} octant can be larger than that from $\,\delta_{\text{cp}}\,$ on electron appearance
- Effect of the latter is smaller than the expected statistical uncertainty in each bin

Equivalent MC

Octant: Residual at Maximal Mixing ($x - MC^{\theta = 0.5}$)/ sqrt($MC^{\theta = 0.5}$)

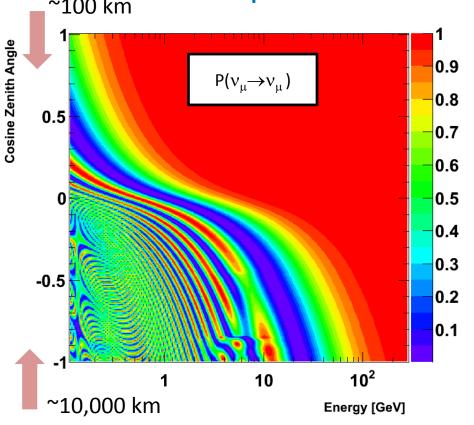


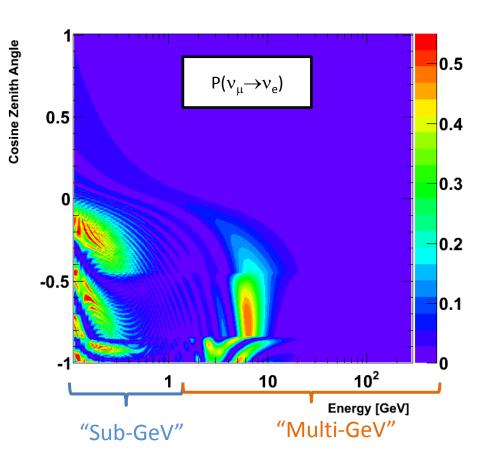
- ☐ Clear differences between the two octants in both the electron and muon samples
- ☐ Overall slightly better sensitivity to the first octant

$$\theta_{23} = 0.4 \text{ vs. } \theta_{23} = 0.5$$
$$\theta_{23} = 0.6 \text{ vs. } \theta_{23} = 0.5$$

2012.8.22 Roger Wendell 22

Zenith Angle Analysis – 480 Bins

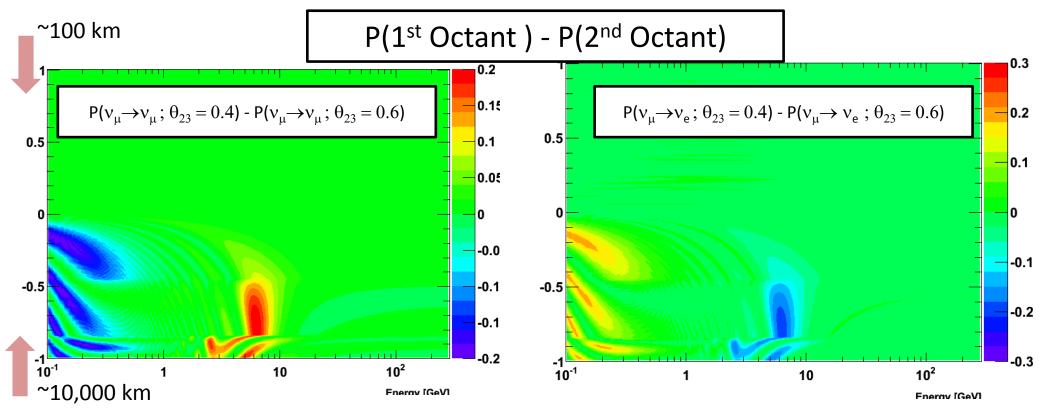

Sample Composition


Composition	า (%)	CC v_e	CC anti-	CC ν_μ +anti- ν_μ	NC
. liko	1R	60.2	10.6	13.5	14.8
$v_{ m e}$ like	MR	57.5	17.4	10.7	13.7
Anti-v _e like	1R	55.7	36.6	1.1	6.4
	MR	51.9	20.7	8.2	19.7

Composition	า (%)	CC v _e	CC anti-	CC ν_{μ} +anti- ν_{μ}	NC
ı, liko	1R	0.2	0.08	98.8	0.2
v_{μ} like	MR	2.5	0.3	91.7	4.4

- ☐ Generally the background component of the e-like signal samples is ~20-30%
- Muon-like samples on the other hand tend have high-purity and reasonable sensitivity to small effects

Pure oscillation probabilities ~100 km



- In the presences of the now large θ_{13} resonant enhancement of the $P(\nu_{\mu} \rightarrow \nu_{e})$ oscillation probability occurs via matter interactions
- Resonance occurs only for (anti-)neutrinos under the Normal (Inverted) Hierarchy
 - ☐ Effects are roughly halved going to the IH

2012.8.22

Oscillation probability difference between the $\theta_{\rm 23}$ octants

- Matter effect gives improved sensitivity
 - Mass hierarchy
 - \square size of θ_{13} and δ_{co}
 - \Box Octant of θ_{23}

- → Asymmetry between neutrinos and antineutrinos
- → Magnitude of resonance effect
- → Appearance and disappearance interplay

(Trends are Independent of Hierarchy)

Systematic Errors

+ % -%

- ☐ Flux: Up/Down Ration, Horizontal/ Vertical
 - ratio, K/p
- ☐ X-sec: NC/CC ratio
- ☐ Dectector: Up/Down Energy cal. Asymmetry
- 5.4 1.3

$$\square$$
 Oscillation Parameters: 1 - σ allowed atm.

$$\beta$$
 = 1.42 \pm 0.35 (stat) + 0.14 _{-0.12} (sys)

This corresponds to 180.1 \pm 44.3 (stat) $^{+17.8}_{-15.2}$ (sys) events a 3.8 σ excess

(Expected 2.7 σ significance)

SK Data disfavor 'no tau appearance' at 3.8 σ

R.Wendell (ICRR)

Interaction Mode	NN < 0.5	NN > 0.5	All
$CC v_e$	781.4 (0.40)	381.3 (0.46)	1162.7 (0.42)
$CC \nu_{\mu}$	1070.2 (0.55)	200.2 (0.24)	1270.4 (0.46)
$CC v_{\tau}$	12.4 (0.01)	37.2 (0.04)	49.7 (0.02)
NC	95.2 (0.05)	209.3 (0.25)	304.4 (0.11)

Systematics Uncertainties for v_{τ} normalization			- %	
Super-K atmospheric v oscillation errors				
28 error terms (expected events)		13.4	14.7	
5 error terms	(observed events)	7.9	8.5	
Tau neutrino cross section	(expected events)	25.0	25.0	
Oscillation parameters (observed events)		5.4	1.3	

A note about tools

☐ Currently the Software WG is working to produce a set of HK-specific tools A realistic detector simulation and reconstruction tools are primary goals Producing a complete working environment will take time Some members of this WG are also participating Up until now HK studies have been done using SK/T2K tools We are currently discussing the possibility of making software developed by Super-K and T2K available to Hyper-K members Similar agreements exist between Super-K and T2K for example In order to make a realistic proposal we need to know if there is a real need exists If you aren't part of SK or T2K but would like to use some software for your studies please let me (or Yokoyama-san, or Shiozawa-san) know What you need and why? What is the timescale for your study?

About Systematics

- ☐ Super-K analysis considers 151 sources of systematic uncertainty from the usual cadre of errors
 - ☐ Flux, cross-section, detector performance
- ☐ This is a partial listing of things relevant to three-flavor issues

Error Source	Uncertainty
$v_{\rm e}$ vs. anti- $v_{\rm e}$ sample selection	7%
Charged-Neutral Pion Production	40%
Tau Production Cross section	25%
DIS Cross Section	5-10%
NC / CC Ratio	20%
Single-Pion Production	20%
Flux Normalization above 1 GeV	7%
Flux Ratio ν to ν bar above 1 GeV	5-8%