Solution(s) for improving the overall photo-detection efficiency at Hyper-K

F. Retière, P. Gumplinger, A. Konaka

Motivations

- Baseline photon detection solution at Hyper-K
 - 20" PMT (same form factor as Hyper-K)
 - Possibly using Hybrid Photo-detector, i.e. APD rather than dynodes
 - 20% active (photo) coverage
 - PMT quantum efficiency not very well matched to Cerenkov light
- Can we do better or cheaper than that?
 - Smaller PMTs with light collectors
 - Lower cost
 - Lower dark noise
 - Better transit time spread

Wavelength shifter Mexican hat solution investigated for LBNE

Pros

- Up to 40% gain in light collection
- Does not require additional PMT
- Preserve prompt light
- Cons
 - Some light reemitted in water
 - may worsen position reconstruction
 - Water index of refraction limit trapping efficiency
 - Delayed photo-electron from WLS

16/01/2013

Trapping reemitted light

Trapping efficiency:

- ~30% with total internal reflection independently of number of bounces
- 98.5%^{nbounce}with mirrors
- Can combine both

Background technical information How interference filters work Also called dichroic filters/mirrors

Reinforced Incident Reflected Light Waves Light Figure 8 λ/4 Low Refractive Index Layer Thin-Film λ/4 High Cavity Refractive Index Layer **Optical-Grade** Glass Reinforced Substrate Transmitted

Reflection and Transmission by Interference Filters

Possible solution from Laseroptik

- Reflection at large angle is important
 - Strong correlation
 between wavelength
 and angle
 - With total internal reflection
 - Max angle hitting the mirror = 56.8 degres
- Angular dependence not simulated yet

Light detection vs wavelength

50 cm diameter PMT, dichroic mirror, 100x100x3 cm³ thick WLS sheet

- GEANT4 simulations
- Use existing wavelength shifter BC482-A
 - Absorb light between 350 nm and 450 nm
 - Is it true that absorption is small below 350 nm?
 - Assume 30% absorption efficiency
 - Reemit in green 460-560 nm
 - Some light will be trapped in WLS
 - 100% reemission efficiency
- Extend absorption range to UV
 - Possible combining two WLS
 - Worsen timing
 - Saint Gobain and Eljen willing to try

Light collection efficiency with 20" PMT

RIUMF

8

Mexican" hat options wrt baseline design

Configuration	Direct photon hitting PMT	WLS geom. eff.	WLS det. eff.	WLS photon hitting PMT
20" PMT (baseline Hyper-K design)	1	0	N/A	0%
20" PMT, 100x100x3cm ³ WLS, mirror	1	75%	50%	0.56
20" PMT, 100x100x1cm ³ WLS, mirror	1	75%	33%	0.37
20" PMT, 100x100x3cm ³ WLS, no dichroic mirror	1	75%	43%	0.48
20" PMT, 100x100x1cm ³ WLS, no dichroic mirror	1	75%	35%	0.39
12" PMT, 100x100x3cm ³ WLS, mirror	0.35	90%	35%	0.47

Assume WLS absorption-reemission efficiency = 30% for BC482A Could be a factor of 2 larger combining UV-blue and blue-green WLS

Dichroic mirror does not help for thin sheet due to large number of bounces

Minimizing the number of bounces

My best guess for the optimum configuration

- 12" PMT with half ball photo-cathode coverage
- Thin WLS ~100x100x0.5 cm³ sheet with hole in center
 - Optimize for UV-blue absorption and low green light attenuation
 - If possible use water-like index of refraction material
- Confine WLS photons with frame in water
 - Dichroic mirror on tank side & Enhanced Specular Reflector on outside
 - Exact shape to be optimized

Or with 20" PMT

Brief summary of simulations

PMT type	Direct photon	Blue to green WLS photons	Blue-UV to green WLS photons
20" Ball PMT	1	0.9	1.8
12" Ball PMT	0.35	0.8	1.6
8" Ball PMT	0.17	0.75	1.5

- Ball (extended photocathode) necessary
- Box shape mostly filled up with water is best
 - Not 100% clear why yet
- Developing enhanced blue-UV to green WLS is compelling

Next steps 1: more simulations

- Detector specific
 - Add angular dependence of reflectivity
 - Determine "optimum" solution
 - Fully understand result
 - Investigate PMT to WLS coupling
 - Having to use optical grease would be very inconvenient

- Within Hyper-K
 - Which solution really works best?
 - Trade of between
 number of photon
 detected and timing
 resolution
 - Granularity gets worse?

Next step 2: identify material and construction solution

- Refurbish spectrophotometer
 - Measure material optical property vs wavelength and angle
 - Money requested for refurbishment
 - If grant awarded money will be available in April

- Dichroic mirror
 - Acquire prototype
 - Investigate mass scale production
- Wavelength shifter
 - Combine UV to blue and blue to green?
 - Plastic with same index of refraction as water?
 - No total internal reflection but easy coupling to PMT
- PMT: Half ball PMT is certainly better

Next step 3: build a prototype

• Small scale to test light collection

- Full scale prototype
 - Straightforward to machine a slab of WLS and couple it to a PMT
 - Can we get large enough mirror?
 - How to test it?
 - ... This may not happen until next year

Thank you

Simulated performances Assumptions

- Wavelength shifter BC482A blue to green shifter
 - Misses a lot of UV light
 - Perfect polish
 - Important for Total Internal Reflection

Simple dichroic filter simulations

- Still some issues in GEANT
- No angular dependence
- Reflectivity = 98.5%

Simulated performances: 2) light collection with 20" PMT

