The NA61/SHINE experiment

Review of hadron production measurements

Nagoya University 03. 10. 2016.

Matej Pavin

Outline

- 1. Hadron production measurements \rightarrow requirements
- 2. The NA61/SHINE experiment
 - Beam
 - PID
 - Phase space coverage
- 3. Hadron production measurements for the T2K experiment
- 4. Future of NA61/SHINE hadron production measurements

Motivation

- Interactions and re-interactions in the target and the beam elements \rightarrow hadrons ($\pi^{\pm}, K^{\pm}, K^{0}_{s}, K^{0}_{l}, \Lambda, ...$) \rightarrow neutrinos
- Neutrino flux is simulated with the MC models → huge uncertainties of the hadron production models → huge uncertainties of the neutrino oscillation parameters

Hadron production measurements are needed for reducing flux uncertainties!!!

Requirements for the hadron production experiment

- 1. Same beam composition and same (or similar) beam momentum
- 2. Precise momentum reconstruction and good PID capabilities (extract differential yields of π^{\pm} , K^{\pm} , *p* and possibly Λ , K_s^0)
- 3. Large phase space coverage (in order to maximize coverage of neutrino parents)
- Why is the NA61/SHINE experiment the best candidate on the market for hadron production measurements?

NA61/SHINE Experiment

Beam

- NA61/SHINE profits from the SPS H2 beam-line (hadron and ion beam)
- Hadron beam
 - 400 GeV protons hit primary target
 - Mix of the e[±], secondary hadrons and tertiary hadrons (re-interaction with collimators) - momentum spread < 1%
 - Identification is done by CEDAR: Cherenkov Differential Counter with Achromatic Ring Focus
 - Another detector (treshold Cherenkov) used in anti-coincidence
 - 95% efficiency, misidentification <0.8%
 - π^{\pm}, K^{\pm}, p beam

TPC tracking system and momentum resolution

- VTPCs: 2 × 2.5 m²
- MTPCs: 3.9 × 3.9 m² inherited from the NA49 experiment
- GTPC light and small forward TPC
- Gases: Ar : CO₂ = 95% : 5% in MTPCs and 90% : 10% in VTPCs
- 2 different topologies: RST ($p_x \cdot q > 0$) and WST ($p_x \cdot q < 0$)
- 2 superconducting magnets: maximum bending power is 9 Tm

PID (dE/dx)

 $\sigma_{dE/dx} = 4\%$

Nucl.Instrum.Meth. A430 (1999) 210-244

TOF-F detector

- 10 modules = 80 scintillators (120 × 10 × 2.5 cm) = 160 PMTs
- Intrinsic resolution ~110 ps
- Acquisition window 100 ns beam intensity is low enough for TOF to discard off-time tracks

PID (TOF)

•
$$m_{TOF}^2 c^4 = p^2 c^2 \left(\frac{c^2 tof^2}{l^2} - 1 \right)$$

• $l \approx 14.5 \text{ m}$

- TOF efficiency depends on track density
- Discarded hit → if 2 or more tracks hit same slab
- for p + C interactions at 31 GeV/c efficiency is 97-98%

Combined $m_{TOF}^2 - dE/dx$ PID

- Maximum coverage of the phase space
 - dE/dx and tof measurements are complementary
- K⁺ PID is most difficult one

Phase space coverage

- Limited mostly by TOF wall size
- T2K phase space coverage

Hadron Production Measurements for the T2K Experiment

Thin carbon target

2.5
$$\times$$
 2.5 cm² , L = 2 cm = 0.04 λ_{int}

Measurement of the production cross section and the spectra of π[±], K[±], K⁰_s, p, Λ

T2K replica target

- L = 90 cm = 1.9 λ_{int} , r = 1.3 cm
- Measurement of the charged pion spectra exiting the target

Beam	Target	Year	Triggers [10 ⁶]	Status	Comment	
	thin	2007	0.7	published $(\pi^{\pm}, K^+, K_0^s, \Lambda)^{1,2}$	has been used for T2K	
protons	replica	2007	0.2	published $(\pi^{\pm})^{3}$	proof of principle	
at	thin	2009	5.4	recently published $(\pi^{\pm}, K^{\pm}, p, K_0^s, \Lambda)^4$	being used in T2K	
31 GeV/c	replica replica	2009 2010	2.8 10.2	submitted to EPJ C $(\pi^{\pm})^{5}$ analysis in progress	-	
¹ Phys. Rev. C84, 034604 (2011). ² Phys. Rev. C85, 035210 (2012).			³ Nucl. Inst (2013).	rum. Meth. A701, 99 ⁴ Eur. Phys. ⁵ arXiv:1603	J. C (2016) 76: 84 .06774 [hep-ex]	

Inelastic and Production Cross Section (p + C @ 31 GeV/c)

- Trigger inefficiencies → corrected with MC
- Production cross section $\sigma_{prod} = \sigma_{inel} \sigma_{qel} \rightarrow \text{production of a}$ new particle
 - σ_{qel} quasi-elastic cross section

 $\sigma_{inel} = 258.4 \pm 2.8(stat) \pm 1.2(det)^{+5.0}_{-2.9}(mod) mb$ $\sigma_{prod} = 230.7 \pm 2.7(stat) \pm 1.2(det)^{+6.3}_{-3.4}(mod) mb$

Analysis of the p + C Interactions at 31 GeV/c (2009)

Charged hadrons (π^{\pm}, K^{\pm}, p)

- Complementary analyses in different momentum ranges
 - ♦ dE/dx
 - dE/dx-tof
 - h^- (no PID, just for π^-)

Neutral hadrons (K_s^0, Λ)

- V0 analysis 2 body decays of the neutral hadrons
- Sample of K⁰_s or Λ is selected by cuts
 - Invariant mass fits

Analysis of the p + C Interactions at 31 GeV/c (2009)

Systematic uncertainties

- PID (*dE*/*dx tof*, *dE*/*dx*, 2% for π[±] and up to 20% for *K*[±])
- Feed-down and Λ weighting (data based feed-down correction for π⁻), 30% of correction factor
- Track cuts (1%)
- Reconstruction efficiency (2%)
- Forward acceptance (4%)
- Analysis specific errors (TOF efficiency, hadron loss, K⁻ and p̄ contamination, etc.), 1-5%

T2K Flux Uncertainty

- Flux uncertainty > 20%
- Flux uncertainty after re-weighting with the p + C at 31 GeV/c results is around 10%
- T2K goal is to reach uncertainty below 5% → replica target results are needed

^{1.} Phys. Rev. D 87, 012001 (2013)

2. Flux Tuning and Uncertainty Updates for the 13a Flux (http://www.t2k.org/docs/technotes/217)

Analysis of the p + T2K Replica Target Data (2009)

- Input: beam → output: particle yield at target surface
- Shape of the neutrino spectra depends on the track position (z) on the target surface → additional binning in z
- Track extrapolation towards target surface
- Systematics: up to 15% (track extrapolation)
- Limited statistics → only π[±] spectra obtained

p + T2K RT Dataset (2010)

- High statistics dataset (extraction of π[±], K[±] and p yields is possible
- T2 trigger standard trigger
- T3 trigger more narrow beam profile

T2 beam profile

x [cm]

Uncorrected spectra of the charged hadrons

Thin vs. replica target measurements

Replica target measurements

- Primary interactions + re-interactions
- Depends on beam profile
- Does not require normalization
- Extrapolation uncertainty

Thin target measurements

- Only primary interactions
- Does not depend on the beam profile
- Requires normalization (σ_{prod})
- No extrapolation uncertainty

It is possible to measure re-interactions in the long (replica) target with thin target measurements (eg. by using π^{\pm} beam)

Measurements for the Fermilab neutrino beams

Beam Prim. Sec.		Target	Momentum (AGeV/c) prim. (sec.) beam	Year	Days	Physics
р	h^+	А	400(40-400)	2016	4x7 days	tests
р	р	р	400 (400)	2016	28 days	SI
р	h ⁺	Α	400 (30-120)	2 016	42 days	ν
Pb		Pb	13, 19, 30, 40	2016	40 days	SI
Pb		Pb	150	2016	5 days	tests
р	р	p/Pb	400 (13, 19, 30, 40, 75)	2017	35 days	SI
р	h^+	Α	400 (30-120)	2 017	42 days	ν
Xe		La	13, 19, 30, 40, 75, 150	2017	60 days	SI
р	р	p/Pb	400 (13, 19, 30, 40, 75)	2018	35 days	SI
р	h ⁺	A	400 (30-120)	2 018	42 days	ν
Pb		Pb	75, 150	2018	40 days	SI

 Targets: C, Al, thin, replica

Beams: p, π^+

Beam momentum 30-120 GeV/c

New hardware: 2 additional forward TPCs + vertex detector

Report from the NA61/SHINE experiment, http://cds.cern.ch/record/2059310

NA61/SHINE beyond 2020 (preliminary ideas)

- Removal of VTPC-1 target will be inside magnetic field surrounded by vertex detector
- Upgrade of the TPC electronics (ALICE electronics)

Conclusions - NA61/SHINE pros

- Various hadron (π^{\pm} , K^{\pm} , p, 9 400 GeV/c)and ion beams
- Various targets (thin, long, ...)
- PID: m²_{TOF} dE/dx allows identification in wide range of momentum (for T2K 0.1 – 30 GeV/c)
- V0 (K⁰_s, Λ) measurement π[±] feed down correction reduces model dependence of results
- Large acceptance (covers most of the T2K phase space) tunable by changing target position and magnetic field

Conclusions - NA61/SHINE cons

- Cannot measure elastic cross-section σ_{prod} is model dependent
- Poor forward coverage (only 6 clusters in GTPC) it will significantly improve (FTPC-1, FTPC-2)
- \blacktriangleright K^+ high systematic uncertainty due to PID
- Long (replica) target is outside tracking system uncertainty due to track extrapolation can be up to 15%
- Wide beam profile (for lower momentum)