Hadron Production Measurement Project with Hybrid Emulsion Detector

Tetsuro Sekiguchi (KEK)

October 4, 2016

Workshop on Hadron production Measurements with Nuclear Emulsions

Nagoya University

CP Violation Search

- CP violation search is one of the most important programs in neutrino physics for next few decades.
 - Ongoing experiments: T2K, SK, NOvA, IceCube, ...
 - Future experiments: T2K-II (~3σ, 2020~), HK, DUNE (>5σ, 2026~)
 - Need to wait for 10years?
 - Can we improve sensitivity of the current experiments significantly?

Atmospheric $v_{\mu} \rightarrow v_{e}$ Measurement

- Several GeV region : large resonance due to Earth matter effect.
 - Sensitive to Mass Hierarchy
- Sub-GeV region : Δ12 oscillation
 - Sensitive to CP phase: ~5% effect → precise measurement is needed!

Atmospheric Neutrino Flux

- Calculation of the atmospheric flux requires modeling hadron production with incident particles as low as ~2 GeV energy
 - Neutrinos with energy < 1 GeV can contribute to the constraint on δ_{CP}
- Low energy range is currently covered by HARP data
- More on systematic error

Boxes = Atmospheric neutrino contribution

Atmospheric Neutrino Flux Uncertainties

- Absolute flux uncertainties are ~15%
- Errors on ratios are reduced to <1%, however v_e/v_e -bar is ~6% since there is no cancellation of systematics by neutrinos from π , μ decay chain
 - Can benefit from measuring π^+/π^- ratio

More on Honda-san and Okumura-san's talks

HARP Data Limitations

•

٠

The dominant systematic uncertainties in HARP are related to re-interactions in the TPC field cage

- New measurements should minimize material between tracking medium and target
- Limited forward acceptance : no data for $\theta < 0.025$ rad
- Forward acceptance can allow for measurement of quasi-elastic cross section

PHYSICAL REVIEW C 80, 035208 (2009)

TABLE II. Summary of the systematic uncertainties affecting the computed π^+ double-differential cross sections and the integrated cross-section measurements for *p*-C interactions at 12 GeV/*c*. Entries are weighted bin by bin with the pion production yields.

Error category	$\delta^{\pi}_{ m diff}$ (%)	$\delta_{\mathrm{int}}^{\pi}$ (%)
Track yield corrections:		
Reconstruction efficiency	1.1	0.5
Pion, proton absorption	3.7	3.2
Tertiary subtraction	8.6	3.7
Empty-target subtraction	1.2	1.2
Subtotal	9.5	5.1
Particle Identification:		
Electron veto	< 0.1	< 0.1
Pion, proton ID correction	0.1	0.1
Kaon subtraction	< 0.1	< 0.1
Subtotal	0.1	0.1
Momentum reconstruction:		
Momentum scale	2.8	0.3
Momentum resolution	0.8	0.3
Subtotal	2.9	0.4
Angle reconstruction:		
Angular scale	1.3	0.5
Total syst.:	10.0	5.1
Overall normalization:	2.0	2.0

Accelerator Neutrino Fluxes

- Absolute flux uncertainty : ~9% around flux peak
- Hadron interaction uncertain is dominant : ~8%
- Hadron interaction length uncertainties largely come from lack of measurements separating the inelastic and quasi-elastic cross sections

→ hadron production measurements in forward region is important

Effect on Accelerator Neutrino Studies

•

•

- Precise hadron production measurements can improve v flux uncertainties.
 - Neutrino flux uncertainty is major component for near detector measurements (for cross-section, etc.)
 - Need to improve uncertainty of cross-section ratio $\sigma(v_e)/\sigma(v_e-bar)$
 - Dominant background for v_e appearance due to contamination of wrong-sign neutrinos \rightarrow Need to estimate more precisely.

Hadrons interacting in Al to produce wrong-sign flux

New Hadron Production Experiment

Goals

- Make measurements of forward scattering to measure the elastic/quasielastic cross sections
- Minimize material between target and tracking region to avoid largest systematic error in HARP
- A portable detector that can be easily moved to different beam lines operating at different energies
- Solution
 - A hybrid nuclear emulsion/electronic detector

- Emulsion/target layers to give very precise interaction vertex/track information
 - Full coverage of the vertex, minimum inactive region
- Emulsion measurements on both sides of a magnetic field region to measure charge and momentum
- Silicon strip detectors give timing information by matching tracks between emulsion and SSD
- Upstream and downstream electron fine-grained detectors to match emulsion tracks to particle ID detectors

- Emulsion/target layers to give very precise interaction vertex/track information
 - Full coverage of the vertex, minimum inactive region
- Emulsion measurements on both sides of a magnetic field region to measure charge and momentum
- Silicon strip detectors give timing information by matching tracks between emulsion and SSD
- Upstream and downstream electron fine-grained detectors to match emulsion tracks to particle ID detectors

•

- Emulsion/target layers to give very precise interaction vertex/track information
 - Full coverage of the vertex, minimum inactive region
- Emulsion measurements on both sides of a magnetic field region to measure charge and momentum
- Silicon strip detectors give timing information by matching tracks between emulsion and SSD
- Upstream and downstream electron fine-grained detectors to match emulsion tracks to particle ID detectors

- Emulsion/target layers to give very precise interaction vertex/track information
 - Full coverage of the vertex, minimum inactive region
- Emulsion measurements on both sides of a magnetic field region to measure charge and momentum
- Silicon strip detectors give timing information by matching tracks between emulsion and SSD
- Upstream and downstream electron fine-grained detectors to match emulsion tracks to particle ID detectors

- Emulsion/target layers to give very precise interaction vertex/track information
 - Full coverage of the vertex, minimum inactive region
- Emulsion measurements on both sides of a magnetic field region to measure charge and momentum
- Silicon strip detectors give timing information by matching tracks between emulsion and SSD
- Upstream and downstream electron fine-grained detectors to match emulsion tracks to particle ID detectors

ECC for Target

Sandwich structure of emulsion films and metal plates.

Suitable for Hadron Production Measurements

- Track densities up to 10⁵ particles/cm² can be reconstructed
 - Interested in sample sizes of ~10⁷ for hadron production measurements
 - ~100-1000cm²
- Many different solid targets can be placed between emulsion layers (Be, C, Al, Fe)
- Track darkness provides particle ID measurements
- Can measure track position and angle very precisely

dE/dx Measurement

17

Momentum Measurement in B Field

C. Fukushima et al., Nucl. Instr. and Meth. A 592 (2008) 56

Possible Site: Fermilab Test Beam Facility (FTBF)

Two beamlines: 120 GeV primary protons from Main Injector

- MCenter: Seconday beam (GeV), tertiary beam down to 200 MeV
- MTest: Secondary beam (1-66 GeV), 1-300kHz intensity
- 4 second per 1 minute

Beam Structure and Particle Content

Beam Energy [-GeV]

Beamline Detectors at FTBF

- Many beamline detectors are available for users
 - Trigger : Scintillation Counters
 - Particle ID : Cherenkov detectors, TOF counters
 - Beam profile : Segmented Wire Ionization Chambers
 - Beam position : MWPCs, Si Pixel or Strip Telescope

Simple Configuration

- Use easily-available or existing equipments for measurements in 1st stage.
 - Many beamline detectors can be available in FTBF
 - Silicon strip detectors are also available in FTBF

Measurements with Simple Configuration

- Place in tertiary beamline to measure dE/dx performance
 - Pions and protons at 0.2-1 GeV/c
- Place in secondary beamline to measure quasi-elastic and elastic cross sections
 - Measurements at 30 GeV useful for T2K
 - ~1mrad angular resolution, can reproduce the Bellettini et al. measurements at different beam energies and targets

Full Configuration

- PID is crucial to measure production cross-section measurements
 - dE/dx in emulsion \rightarrow only up to 1 GeV available.
 - Cherenkov threshold detector Tolerance for high intensity is key

 Lead glass calorimeter

Existing 1 T permanent magnet

PID by Cherenkov Threshold Detector

Study by M. Hartz

Cherenkov Thresholds

- Assume 5 layers with different indices of refraction of 1.01, 1.03, 1.05, 1.1, 1.3 (need to be optimized)
- Particles above Cherenkov threshold:

	n=1.01	n=1.03	n=1.05	n=1.1	n=1.3
0.5 GeV/c	е	e,µ	e,μ,π	e,μ,π	e,μ,π
1.0 GeV/c	e,μ,π	e,μ,π	e,μ,π	e,μ,π	e,μ,π,K
1.5 GeV/c	e,μ,π	e,μ,π	e,μ,π	e,μ,π,Κ	e,μ,π,K,p
2.0 GeV/c	e,μ,π	e,μ,π	e,μ,π,K	e,μ,π,Κ	e,μ,π,K,p
2.5 GeV/c	e,μ,π	e,μ,π,Κ	e,μ,π,K	e,μ,π,Κ,p	e,μ,π,K,p
3.0 GeV/c	e,μ,π	e,μ,π,Κ	e,μ,π,K,p	e,μ,π,K,p	e,μ,π,K,p
3.5 GeV/c	e,μ,π,Κ	e,μ,π,Κ	е,μ,π,Κ,р	e,μ,π,K,p	e,μ,π,K,p
4.0 GeV/c	e,μ,π,Κ	e,μ,π,K,p	e,μ,π,K,p	e,μ,π,Κ,p	e,μ,π,K,p

- Above 1 GeV/c, no separation of e,μ,π
- Separation of e,µ,π and K up to 3.0 GeV/c
- Separation of e,µ,π and p up to 6.5 GeV/c

Alternatives?

A. Konaka

Particle Identification by A-RICH (Belle2)?

- Aerogel ring imaging Cherenkov
 - π / K / p separation in 1-5 GeV/c
 - more flexible than threshold Cherenkov
 - Lower index aerogel extends momentum range
 - Multi-track capability!

Possible Schedule

- We are applying to JSPS grant (Kaken-hi) and US-Japan grant
- FY2017
 - Production and purchase : ~November, 2017
 - Shipment to FNAL : ~December, 2017
 - Preparation for beam test : ~January, 2017
 - setup dark room, electronics, and DAQ
 - Beam test : ~February, 2018
 - emulsion setup (1 week), detector setup (a few days), beam exposure (1 week)
 - Analysis : ~March, 2018
 - FY2018 : preparation/setup full detector, measurements with low/high intensity beams
 - FY2019 : measurements with high intensity beam

Summary

- Precise measurements of hadron production and scattering
- Hybrid emulsion/electronic detector is proposed.
 - Low inactive region
 - Better vertex/track information expected
- Plan to use beamlines at FTBF for sub-10 GeV proton/pion beams
- Simple configuration is used to check dE/dx performance and measure quasi-elastic/elastic cross sections
 - Emulsion detector and related equipments are prepared in Japan and shipped to FNAL.
- Beam test planed in February, 2017.

Supplemental Slides

Test sample #1: only emulsion films

Check tracking efficiency, angle accuracy, and dE/dx reaction

Test sample #2: emulsion films and carbon plates

Check the connection to the electronic detectors

Beam particle and momentum: 10GeV/c proton and pion

Beam density: ~10⁴ particles/cm² for 1 spot

Test sample #3: emulsion films and magnetic field

Check momentum measurement and charge sign judgement

Test sample #4: emulsion films and iron plates

Check momentum measurement by multiple scattering

Beam particle and momentum: 0.2-1GeV/c proton and pion

Beam density: ~10⁴ particles/cm² for 1 spot