HKKM Calculation of Atmospheric Neutrino Flux. M.Honda

- 1. Full 3D calculation with inclusive interaction code created from established code.
 - => ~a few 100 times faster than original code.
 - => Easy to modify the secondary spectra.
- 2. Muon calibration of the inclusive interaction code.
- 3. Use relatively large virtual detector with virtual detector correction.
- 4. Realistic geomagnetic field and air profile. IGRF and NRLMSISE-00.
- 5. New Cosmic Ray Spectra Model (preliminary).

3D-Calculation Geometry

Re = 6378 km

Simulation Sphere (Rs $10 \times \text{Re}$)

Cosmic ray go out this sphere are discarded. Cosmic rays go beyond are pass the rigidity cutoff test

Injection Sphere (Re +100lm)

Cosmic Rays are sampled and injected here

Virtual Detector

All neutrinos path through are recorded

Primary Cosmic Ray Spectra

From E.S. Seo @ ICRC2009

Primary Cosmic Ray Model and referred data

Rigidity Cutoff and Geomagnetic Field (cartoon) i

Rigidity Cut Off

Gaisser Formula for illustration (by T.K.Gaisser at Takayama, 1998)

$$\Phi_{\nu} = \Phi_{primary} \otimes R_{cut} \otimes Y_{\nu}$$
$$\Phi_{\mu} = \Phi_{primary} \otimes R_{cut} \otimes Y_{\mu}$$

Where

$$\Phi_{primary} : \text{Cosmic Ray Flux}$$

$$R_{cut} = R_{cut}(R_{cr}, latt., long., \theta, \phi)_{:\text{Geomagnetic field}}$$

$$Y_{v} = Yield_{v}(h, \theta)_{\text{Hadronic Interaction Model,}}$$
Air Profile, and meson-muon decay
$$Y_{\mu} = Yield_{\mu}(h, \theta)_{\text{Hadronic Interaction Model,}}$$
Air Profile, and meson decay

This formula illustrates 1D-calculation well

Muon Calibration of Interaction Model

Quick 3D calculation of muon flux.

As the muon flux is a "local quantity" ($\gamma ct \sim 60$ km at10 GeV), We can calculate it in a quick calculation method: 1. Inject cosmic rays just above the observation point, 2. Analize all the muons reach the surface of Earth.

Comparison of Quick 3D calculation with Full 3D calculation μ^+ U Full 3D $\cos\theta > 0.8$ cos⊕->0.8 10¹ 10¹ 0.8 >cos⊕>0.6 0.8 >cos⊕>0.6 0.6 >cos⊕>0.4 0.6 >cos⊕>0.4 0.4 >cos⊕>0.2⁻ Quick 3D 0.4 >cos⊕>0.2 $\phi_{\mu}~(m^2_{\rm } {\rm sr} {\rm ~s} {\rm ~GeV/c})^1$ GeV/c)¹ S ϕ_{μ} (m² sr 0 00 10 10 10¹ 10⁰ 10⁰ 10¹ 10^{-1} 10^{-1} P_{μ} (GeV/c) $\textbf{P}_{\mu} \text{ (GeV/c)}$

This method works above 0.2 GeV/c.

Muon Calibration of inclusive DPMJET-III

==> DPMJET-III Should be Modified

Comparison with Accelerator data

DPMJET-III vs NA49

JAM + Modified DPMJET-II vs Muons at the Balloon altitude (HKKM2011)

DPMJET II JAM vs HARP

Virtual detector correction

Averages in $\theta < \theta_1$ and $\theta < \theta_2$ can be written with the central value φ_0 as

$$\phi_1 \simeq \phi_0 + \phi' \theta_1^2$$
$$\phi_2 \simeq \phi_0 + \phi' \theta_2^2$$

where $\phi\,{}'\,is$ a constant.

Then we can calculate the central flux value as

$$\varphi_0 \simeq \frac{\theta_1^2 \phi_2 - \theta_2^2 \phi_1}{\theta_1^2 - \theta_2^2} = \frac{\phi_2 - r^2 \phi_1}{1 - r^2} \quad \text{for} \quad r = (\frac{\theta_2}{\theta_1}), \ r < 1$$

Apply this relation to the MC results

$$\phi_1 = \frac{N_1}{T \pi \theta_1^2}, \quad \phi_2 = \frac{N_2}{T \pi \theta_2^2}$$

IGRF10 Geomagnetic Horizontal Field Strength

Atmosphere Model

US-starndard'76 may be used as the global approximation of the Atmosphere.

Atmosphere model (NRLMSISE-00) and seasonal variations

Calculated Atmospheric Neutrino Flux averaged over all directions

Seasonal Variation of Atmospheric Neutrino flux

Kamioka

INO site

South Pole

Flavor Ratios of Atmospheric Neutrino Flux

Seasonal and Site Variation of Atmospheric Neutrino Flavor Ratios

The variation of $\frac{\nu_{\mu} + \overline{\nu_{\mu}}}{\nu_{e} + \overline{\nu_{e}}}$ at South Pole and the difference from Kamioka are almost equal to the largest estimation of its uncertainty.

Zenith Angle Variation of Neutrino Fluxes at 1 GeV

Zenith Angle Variation of Neutrino Fluxes at 3.2 GeV

Azimuth Angle Variation of Neutrino Fluxes at 1 GeV at SK site

Azimuth Angle Variation of Neutrino Fluxes at 3.2 GeV at SK site

Cumulative Neutrino Production Height at SK site (Summed over all azimuth angles)

Impact of AMS02

After 123 seconds, 1,000 tons of fuel is spent. and

BESS-polar

Photographed from a STA (Shuttle Training Aircraft)

New Cosmic Ray Model with AMS02 and BESS-polar

Discarded some data from model construction.

μ -data Observed by BESS (2001)

Solar Modulation by Neutron Observed by Monitor

Solar Modulation of Cosmic Ray Proton

Solar Modulation of Cosmic Ray Helium

Primary flux ratio to solar minimum at BESS μ -observation

Muon Calibration of Interaction Model with New Cosmic Ray Model

Resulting Neutrino Flux (all v sum)

Muon calibration works !

Comparison of secondary spectra of interaction models at 1 TeV

Estimated Error in Atmospheric v-flux Calculation (HKKMS07)

Possible Error with JAM (HKKM11)

 δ_{π} μ -observation error + Residual of reconstruction

- δ_{κ} Kaon production uncertainty
- δ_{σ} Mean free path (interaction crossection) uncertainty
- δ_{air} Atmosphere density profule uncertainty

Summary

•We overviewed the calculation of atmospheric neutrino flux in HKKM.

- •With NRLMSISE-00 atmosphere model, we find a large seasonal variation of neutrino flux at polar region. This also cause a variation in $\frac{\nu_{\mu} + \overline{\nu_{\mu}}}{\nu_{e} + \overline{\nu_{e}}}$ ratio.
- •We presented preliminary study based on AMS02 and BESS-polar. However, with the muon calibration, resulted atmospheric neutrino flux is very similar to the one with our (old) primary flux model.
- SK started to observe the predicted features of atmospheric neutrino flux.
 Advertisement: We are planning to record all the atmospheric neutrino on the earth. Then, we will be able to provide the atmospheric neutrino flux at any site on the Earth in a shorter period without re-calculation.

Atmospheric neutrino observed by SK

(Advertisement of the talk of Okumura-san)

Solar Modulation of Atmospheric Neutrinos

Observed Azimuthal Variation of v_e flux (from PHD thesis of E.Richard)

Energy Binned All Azimuth angles

Zenith Angle Binned All Energies

Observed Azimuthal Variation of ν_{μ} flux (from PHD thesis of E.Richard)

Zenith Angle Binned All Energies

Energy Binned All Azimuth angles

From K.Okumura in ICRC2015

Back up

log E _p

Assume the atmospheric neutrino flux is expanded as

$$\varphi(\zeta,\eta) = \varphi(0,0) + \frac{\partial \varphi}{\partial \zeta} \zeta + \frac{\partial \varphi}{\partial \eta} \eta + \frac{1}{2} \frac{\partial^2 \varphi}{\partial^2 \zeta} \zeta^2 + \frac{\partial^2 \varphi}{\partial \eta \partial \zeta} \zeta \eta + \frac{1}{2} \frac{\partial^2 \varphi}{\partial^2 \eta} \eta^2 + \dots$$

Average in a virtual detector with radius θ is given as

Assume the atmospheric neutrino flux is expanded as

$$\varphi(\zeta,\eta) = \varphi(0,0) + \frac{\partial \varphi}{\partial \zeta} \zeta + \frac{\partial \varphi}{\partial \eta} \eta + \frac{1}{2} \frac{\partial^2 \varphi}{\partial^2 \zeta} \zeta^2 + \frac{\partial^2 \varphi}{\partial \eta \partial \zeta} \zeta \eta + \frac{1}{2} \frac{\partial^2 \varphi}{\partial^2 \eta} \eta^2 + \dots$$

Average in a virtual detector with radius θ is given as

(continued)

$$\begin{split} \int_{\sqrt{\eta^{2}+\zeta^{2}}<\theta} \eta^{2} d\eta d\zeta &= \int_{\sqrt{\eta^{2}+\zeta^{2}}<\theta} \zeta^{2} d\eta d\zeta = \int_{-\theta}^{+\theta} \int_{-\sqrt{\theta^{2}-\zeta^{2}}}^{+\sqrt{\theta^{2}-\zeta^{2}}} \eta'^{2} d\eta' d\zeta \\ &= \frac{2}{3} \int_{-\theta}^{+\theta} \sqrt{\theta^{2}-\zeta^{2}}^{3} d\zeta \\ &= \frac{2}{3} \theta^{4} \int_{-1}^{+1} \sqrt{1-t^{2}}^{3} dt \\ &= \frac{1}{4} \pi \theta^{4} \end{split}$$

Then we get

$$\varphi_{\theta} \equiv \frac{1}{\pi \theta^2} \int_{\sqrt{\eta^2 + \zeta^2} < \theta} \phi(\eta, \zeta) d\eta d\zeta = \phi(0, 0) + \frac{1}{8} \left(\frac{\partial^2 \varphi}{\partial^2 \zeta} + \frac{\partial^2 \varphi}{\partial^2 \eta} \right) \theta^2 + \dots$$

Note, the factor before θ^2 would be a little different, due to the Jacobian for the integration on a sphere.

Cosmic rays in atmosphere

$$p_{CR} + [Air] \rightarrow \begin{pmatrix} n^{\pm} \cdot \pi^{\pm} \\ m \cdot \pi^{0} \end{pmatrix} + X(p, n, K,)$$
$$\pi^{0} \rightarrow 2 \gamma$$
$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$
$$\mu^{\pm} \rightarrow \nu_{e}(\bar{\nu}_{e}) + \bar{\nu}_{\mu}(\nu_{\mu}) + e^{\pm}$$

Atmospheric Neutrino

$$\nu_{\mu}:\nu_{e}\approx 2:1$$

 $\gamma, e^{\pm} \rightarrow$ EM-cascade \rightarrow Air Shower

Other p's, n's, and sometimes π 's repeat above interactions.

Analysis of calculation error:

Give Variations in the phase space and compare the variation of neutrino flux and the Maximum variation of muon flux in 0.5 ~ 2 GeV/c (μ +) and 0.5 ~ 4 GeV/c (μ -), where BESS Balloon observation was available.

Vertical neutrino flux

Horizontal neutrino flux

Example in HKKM06 (PRD 2007) with

$$\phi_{\nu}(0) \simeq -\frac{1}{3} \phi_{\nu}(10) + \frac{4}{3} \phi_{\nu}(5)$$

Vertical, E_v =100 MeV

Proton closeup

Helium closeup

Azimuth Angle Variation of Neutrino Fluxes at 3.2 GeV at INO site

Azimuth Angle Variation of Neutrino Fluxes at 3.2 GeV at Suth Pole

Cumulative Neutrino Production Height at INO site (Summed over all azimuth angles)

Cumulative Neutrino Production Height at South Pole (Summed over all azimuth angles)

Azimuth Angle Variaiton of Neutrino Production Height

Amplitude of Modification (SHKKM 2006)

