Emulsion Production and Scanning

Contents

- 1. Emulsion production at Nagoya University
- 2. Scanning and track reconstruction
- 3. Non standard film (and applications)

Osamu Sato (Nagoya University) 2016 Oct 03 Hadron WS @ Nagoya university

Two technologies for particle physics

 Emulsion production facility have been constructed at Nagoya University in 2010.
 Emulsion properties can be tuned by user-selves.

"hand made" emulsions suit for experiments.

- Automatic scanning system was proposed 1974.
- Continuous development since 1980s and systematically employed in large scale experiment since 1994.

Projects with "hand made" emulsion

	Project	Physics	Requirement	Technique
	T60	Neutrino Oscillations, interaction processes study	High mass & high spatial resolution	Emulsion Cloud Chamber
	GRAINE	Gamma ray telescope	Large area & fine angular resolution	Angle measurement in a short range
Park matter With and Indensity Briters Handler	NEWS	Dark Matter search	Very short range <<1um tracking	Fine grain emulsion Detection of track
$ \begin{array}{c} 400 \\ 230 \\ 60 \\ 0 \\ 312 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	200 Elevation (m) 936 1.9	Muon radiography	Large area & long term exposure	Long life emulsion

Production of Nuclear Emulsion

- 1. Gel Production
- 2. Plastic Base Preparation
- 3. Pouring (Forming film)

High Resolution Detector : Nuclear Emulsion

in gelatin film

1. Gel Production

2. Plastic Base Preparation

①Corona discharging & slitting

2 Cutting

300

610

@ Ono Kogyo Co.,Ltd

3Checking wet-condition

④Drying

5 Coating with Gelatin →Drying

Prod. speed max 48m²/day

3. Pouring (Forming film)

→Repeating for another side

Past performance of mass production (case of GRAINE-2015 experiment) 2015 2014 Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Jan. Gel 51 operations(x1) 154 operations(x1) 40 operations(x3) subtotal 245 operations (194.7 kg) Base subtotal ~150m² (~600 cuts) Discharging (30cm x 1260m=)387 m² \rightarrow a half of area with good quality Pouring test run 3 weeks 8 weeks 1week 66.83 m² (gel 143.9 kg) total

with 11 members

Productions & Experiments in 2014-15

	gel production	film production
GRAINE	200 kg	67 m²
JPARC-T60	67 kg	30 m²
μ -radiography	40 kg	20 m²

After development treatment

ECC01 PL69-01 EM layer (measured after swelling)

Basic characteristics of emulsion

- Grain Density (GD) : Number of silver grains in 100 um mip track length
- Fog Density (FD) : Number of silver grains in a volume (10um)3
- Higher GD (>30 or so) and lower FD(<10 or so) is a good emulsion.

GD and FD long term stability

High AgBr dense composition film (55%v 高銀)

14

GD and FD long term stability

Middle AgBr dense composition film (45%v 中銀)

電子ビーム照射から現像までの経過日数 [days]

Refresh treatment

Film can be "Refreshed".

Before in use, "Erasing" accumulated tracks by high temperature and high humidity.

 $Ag_4 + 2H_2O + O_2 \rightarrow 4Ag^+ + 4OH^-$

Emulsion amount

ECC **Chamber** structure depends on physics, specific conditions. Sandwich with target material (plates) or only emulsion films ECC Water, Fe, Pb, C etc.

Required emulsion amount can be estimated

- 1 If fixing tracking sampling rate (material and film ratio) is fixed.
- 2 If accumulating **track density** is fixed .
- ③ If exposure **period** (and **temperature** condition) is fixed

Remark

Direct contact by some metals (AI, non stainless Fe) make damage to Emulsion Maximum track density can be analyzed in emulsion films $<10^{6}$ / cm² (keep $<10^{4-5}$ /cm² is safer)

Hyper Track Selector

Processer: 72 GPUs

Speed in cm²/ hour 5000 10000 1000 100 ×70 10 1 0.0820.1 0.003 0.01 0.001 NTS(CPLD)UTS(FPGA) S-UTS HTS TS(TTL) (GPGPU) 1983 1994 1998 (FPGA) 2006-2015Objective lens: FOV 25mm²

Emulsion film to be scanned . 25x38 cm² or 25x25cm² 1~1.5 hour

18

Scanning time is shared by projects. In total about 100 m² film area (>1000 films) were scanned in recent 12 months

Camera:

2MP 72 sensors

Shrinkage and **distortion**

Emulsion is shrink or swelling after development treatment. So angle is not conserved at exposure time and to be corrected . Shrinkage factor :: Emulsion thickness ratio at exposure time and scanning

An example of distortion map (T60 PlotDc_dc-45.lst.ps)

Typically distortion is similar around a few mm area.

So the distortion correction is done by each several mm area box.

With shrinkage(film thickness) correction micro track angle is aligned to base track

Micro track angular resolution

(angle difference between base track and micro track)

Track reconstruction

- Two base track segments are tried to be connected assuming cut off momentum.
- They are connected if the position and angular difference within the allowance .
 - Position difference between two segments extrapolating at middle place.
 - Angular difference

Detection Efficiency

 $tan\theta_{X/Y}$ 25

GRAINE project

Gamma-Ray Astro-Imager with Nuclear Emulsion

33 collaborators, 6 institutes, PI : S.Aoki (Kobe Univ.) Aichi University of education, ISAS/JAXA, Kobe University, Nagoya University, Okayama University of science, Utsunomiya University

Event analysis example

Use of non standard film, AgBr Crystal control film

Directional Dark Matter Search with very high resolution nuclear emulsion

detector : nuclear emulsion (NIT)

Plasmon resonance in emulsion Using optical microscope, can see tracks are colorful!!

Carbon ion track after developing process Taken by color camera (Halogen lamp λ = 300~3000nm)

C ion 100keV Polarized angle dependence

Polarizer angle

Muon radiography

Arrived muon density as a function of angle (40 films = 3m² 40 days)

Counting penetrating muons as a function of arrived angle (ax,ay) Long term vs Large film area Temperature not under control

100m

R&D for Enlarging the AgBr crystal size

Pupose

Prototype large crystal film comparison with standard film

200nm

Standard film

GD 35.7±0.9 FD 0.49±0.04

800nm

Prototype film very high contract !

GD 38.0±1.4 FD 0.47±0.17

Summary

- The emulsion production in Nagoya university started from 2010.
- Several types of emulsion, AgBr crystal size 20nm -800 nm, sensitize control, are developed being to use.
- 6-7 m² emulsion production and making films in one month.
- Track readout system developed since 1980s and scanning speed is increasing x100 every 10 years.
- Current scanning speed is 5000 m² / year readout.
- Month scale for readout a 10 m².
- Tracking and reconstruction program is keep developing to follow the scanning speed.

Back up

T60 extensionの検出器

 \mathbf{C}

Large size Emulsion Shifter (Kobe U.)

(2013年度)

- 二值化的希德
- ハイパスフィルタの周波数

飛跡検出効率 (Tracking efficiency) が良くなるように調

40

CORRMAP POSITION

CORRMAP ANGLE

Tracking efficiency at each base track segment

base

Search !

Fe

Fe

Fe

Fe

emulsion

HARD X-RAY MICROSCOPE

SPring-8@Japan

Zone plateZernike phase plate (outer most zone width of 50 nm)

Ta 100 nm thickness pertarn on SiN membrane (2µm)

70 nm line/70 nm space

44

80 nm line/80 nm spac

事象選別の高度化

2. プラズモン共鳴効果解析

> 現像銀のnmスケール構造
 ⇒ シグナル-ノイズ同定、dE/dx情報 (PID)
 > 構造を反映した特殊な光学応答
 ⇒局在プラズモン共鳴効果

実装可能なハード・ソフトの設計・構築(2016年の課題)

偏光特性を用いることで10nmの分解能を達成!

光学顕微鏡⇔SEMの対応付測定

今回 ~2umの精度(≒ステージ移動精度)で光学顕微鏡⇔SEMの位置対応付を行う 手法を確立

光学顕微鏡で撮像したイベントと初めて1対1対応させたSEM解析を行なった

Result of performance [60 – 100 keV] [lon-implant system]

Systematic uncertainties have several %.

Plasmon resonance in nano-metaric particle

 λ_l has visible wave length for 40 – 100 nm Ag nano particle

Polarization analysis

- develop the optical microscope that can do polarization analysis
- set a polarizer under the camera and rotate it

手動塗布による原子核乾板製造

ベース貼り	15分
塗布	15分
セット	30分
移動	10分
乾燥	1~2日

製造可能量

0.15m²x5枚/1サイクル x 6回 x 4日 = 9m²/week

原子核乾板塗布装置の開発

※1サイクル = 10min

0.225m²/1サイクルを8時間稼働で5m²/day → 20m²/week → 1000m²/year

※製造量は両面塗布面積

自動アプリケータ塗布

屈折ピラミッドの観測概要

