Observation of Supernova Neutrinos — Past and Now —

M.Nakahata

Kamioka Observatory, ICRR/ Kavli IPMU, Kamioka satellite the Univ. of Tokyo

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Kavli IPMU 10th anniversary symposium 16 - 18 October 2017

30th Anniversary of SN1987A

Cake made for an anniversary held on Feb.12, 2017 at the Univ. of Tokyo

Cake made by Kamioka local people on Feb.23, 2017

<u>Contents</u>

- Why large underground detectors were constructed in 1980's
- A little history of the Kamiokande detector
- Observation of neutrinos from SN1987A by Kamiokande, IMB and BAKSAN
- What we have learned from this observation
- Supernova detectors in the world now
- What Super-Kamiokande will measure for supernova
 - SK-Gd project (if I have time)

Prediction of GUTs in 1970's

VOLUME 32, NUMBER 8

PHYSICAL REVIEW LETTERS

25 FEBRUARY 1974

Unity of All Elementary-Particle Forces

Howard Georgi* and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 10 January 1974)

Strong, electromagnetic, and weak forces are conjectured to arise from a single fundamental interaction based on the gauge group SU(5).

We present a series of hypotheses and speculations leading inescapably to the conclusion that SU(5) is the gauge group of the world—that of the GIM mechanism with the notion of colored quarks⁴ keeps the successes of the quark model and gives an important bonus: Lepton and hadron

Georgi and Glashow

P. Langacker, Phys. Rep. 72, No.4(1981) 185.

Proton decay was predicted.

Expected number of proton decay events was $30 \sim 300$ events/1000ton/year for 10^{31} ~ 10^{30} years of proton lifetime.

Large proton decay detectors were constructed in 1980's

IMB (3300 ton)

Kamiokande (1000 ton)

Frejus (700 ton)

NUSEX (130 ton)

> KGF (~100 ton)

Kamiokande-I detector(1983-1984)

Fiducial volume: 880 ton (2m from the wall)

1000 20-inch PMTs were used

Photo-coverage: 20%

High resolution detector for measuring the branching ratio of proton decay.

However, proton decay was not observed.

Upgrade to Kamiokande-II (1984-1985)

Thanks to large photo-coverage, it was found that the detector is sensitive to low energy events.

So, the detector was upgraded for solar neutrinos.

cosmic rays muons.

Optical observations of SN1987A

Feb.24th 5:30(UT): Ian Shelton announced mag. 5 object based on 3 hours observation from Feb.24th 1:30(UT) using 25cm telescope at Las Campanas Observatory in Chile. (IAU circular 4316)

> Feb.23rd 9:20(UT) No optical signal yet. (A.Jones (IAU circular 4340))

> > Before

Feb.23rd 10:38(UT) First optical observation. Mag. 6 at this time. (R.H.McNaught (IAU circular 4316))

After

Cf. Neutrino time: Feb.23rd, 7:35(UT)

Time order of neutrinos and optical signals

So, neutrinos arrive earlier than optical signals. Type II: a few hours - several tens of hours earlier Type Ib/Ic: several minutes earlier

Time order of information (from a diary of Kamiokande)

Feb. 25th, 1987: A fax was sent to Univ. of Tokyo

UNIV OF PENN - DEPT OF PHYSICS P.01 TO: EUGENE BEIER SENSATIONAL NEWS ! SUPERNOVA WENT OFF 4-7 DAYS AGO IN LARGE MADELLENIC CLOUD, SO KAC AWAY . NOW VISIBLE MADNITUDE 4N5, WILL REACH MAXIMUM MAGNITUDE (-100) IN A WEEK. CAN YOU SEE IT ? THIS IS WHAT WE HAVE BEEN WAITING 350 YEARS FOR! SID BLUDMAN (215) 546-3083

Asked Kamioka shift to send recent data tapes.

Feb. 27th(Fri): The data tapes arrived at Univ. of Tokyo and data was analyzed.

Feb. 28th(Sat): We found the neutrino events from SN1987A!

Mar. 7th(Sat): Announced to the world. Submit paper to PRL.

Kamiokande data

The Baksan underground scintillation telescope (Russia)

Events observed at Kamiokande, IMB and Baksan

Adjusting the 1st events from the experiments

What we have learned from SN1987A

Vissani, J. Phys. G: Nucl. Part. Phys. 42 (2015) 013001

Sato and Suzuki, Phys.Lett.B196 (1987) 267

- > Total energy released by \overline{v}_{e} was measured to be ~5x10⁵² erg.
- > Assuming equipartition, binding energy was estimated to be $\sim 3x10^{53}$ erg.
- The observed released energy and explosion time scale were consistent with predictions from the supernova theory.

However, no detailed information of burst process was observed because of low statistics.

History of supernova detectors

Supernova burst detectors in the world now

Supernova neutrino detectors

Detector	Type	Mass (kt)	Location	Events	Status
Super-Kamiokande	H_2O	32	Japan	$7,\!000$	Running
LVD	$C_n H_{2n}$	1	Italy	300	Running
KamLAND	$C_n H_{2n}$	1	Japan	300	Running
Borexino	C_nH_{2n}	0.3	Italy	100	Running
IceCube	Long string	(600)	South Pole	(10^6)	Running
Baksan	C_nH_{2n}	0.33	Russia	50	Running
HALO	Pb	0.08	Canada	30	Running
Daya Bay	$C_n H_{2n}$	0.33	China	100	Running
$NO\nu A^*$	$C_n H_{2n}$	15	USA	4,000	Running
MicroBooNE*	Ar	0.17	USA	17	Running
SNO+	C_nH_{2n}	0.8	Canada	300	Near future
DUNE	Ār	40	USA	$3,\!000$	Future
Hyper-Kamiokande	H_2O	374	Japan	$75,\!000$	Future
JUNO	$C_n H_{2n}$	20	China	6000	Future
RENO-50	C_nH_{2n}	18	Korea	5400	Future
PINGU	Long string	(600)	South Pole	(10^6)	Future

Neutrino event estimates are approximate for 10 kpc. An asterisk indicates a surface detector, which have more cosmogenic background. Numbers in parentheses indicate long-string Cherenkov detectors which do not reconstruct individual interactions.

From K. Scholberg, arXiv:1707.06384

Supernova signals by Dark Matter detectors

XENON1T

(Xe 1ton)

XMASS (Xe 0.83ton) >300eV threshold

Supernova at 10 kpc

Remark: Coherent interaction itself was experimentally observed by the COHERENT experiment in this year. (science.aao0990)

Super-K: Number of events

Livermore simulation T.Totani, K.Sato, H.E.Dalhed and J.R.Wilson, ApJ.496,216(1998) Nakazato et al. K.Nakazato, K.Sumiyoshi, H.Suzuki, T.Totani, H.Umeda, and S.Yamada, ApJ.Suppl. 205 (2013) 2, (20M_{sun}, trev=200msec, z=0.02 case)

Sensitivity of Super-K for the model discrimination

For 10kpc supernova

Super-K: directional information

Real time supernova monitor in Super-K

Raw data

Processed data

Real Time Process

Quickly analyze events. Reconstruct vertex, energy and direction.

Supernova Watch

Search for timeclustered events. Get initial result within 200 sec after a burst.

SK shift people always keep watch whether the processes are running.

If significant time-clustered events are found, send emails to experts (PC and portable phone e-mails.) Also, send signal to SNEWS.

Details in K. Abe et al., Astropart. Phys. 81 (2016) 39-48

Detection efficiency of the real time SN monitor

100% efficient for our galaxy and LMC for various models.

K. Abe et al., Astropart. Phys. 81 (2016) 39-48

Supernova Relic Neutrinos

~10¹⁰ stars/galaxy × ~10¹⁰ galaxy × 0.3% (massive star->SN) ~ $O(10^{17})$ SNe

SK-Gd project for Supernova Relic Neutrino

Preparation and plan for SK-Gd project

Gd-loading, pre-cleaning and Gd-water circulation systems were constructed.

Low radioactive $Gd_2(SO_4)_3$ power has been developed and getting close to our goals. Uranium and radium removal resins have been developed.

Conclusions

- Large volume detectors were constructed in order to search for proton decay. Without this strong motivation neutrinos from SN1987A may not have been observed.
- The observation of the SN1987A neutrinos proved the basic scenario of supernova explosions.
- Super-K will observe many events for a galactic supernova and they will tell us detailed information to reveal explosion mechanism.
- SK-Gd for supernova relic neutrinos will start in a few years.