Axions

Oct. 172017 @KavlilPMU 10th Anniversary Symposium

Fumi Takahashi
 (Tohoku)

The Strong CP Problem

$$
\mathcal{L}_{\theta}=\theta \frac{g_{s}^{2}}{32 \pi^{2}} G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}
$$

Experimental bound from neutron electric dipole moment reads

$$
|\theta|<10^{-10}
$$

Why θ is so small is the strong CP problem.
cf. More precisely, the physical strong CP phase is

$$
\bar{\theta} \equiv \theta-\arg \operatorname{det}\left(M_{u} M_{d}\right)
$$

which makes the problem even more puzzling.

In the Peccei-Quinn solution, the strong CP phase is promoted to a dynamical variable:

$$
\mathcal{L}_{\theta}=\underbrace{\left(\theta+\frac{a}{f_{a}}\right)}_{\theta_{\text {eff }}} \frac{g_{s}^{2}}{32 \pi^{2}} G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}
$$

Axion mass: $\quad m_{a} \simeq 6 \times 10^{-6} \mathrm{eV}\left(\frac{f_{a}}{10^{12} \mathrm{GeV}}\right)^{-1}$
Axion-like particles (ALPS) do not satisfy the above relation.

Axion Dark Matter

The axion dark matter (DM) is produced as coherent oscillations [misalignment mechanism].

Preskill, Wise, Wilczek `83, Abbott, Sikivie, `83, Dine, Fischler, ` 83

$$
\Omega_{a} h^{2} \simeq 0.11 \theta_{i}^{2} C\left(\theta_{i}\right)\left(\frac{f_{a}}{5 \times 10^{11} \mathrm{GeV}}\right)^{1.184} \mathrm{CDM}
$$

Anharmonic effect Bae, Huh, Kim `08, Visinelli and Gondolo `08

Axion Interactions

- Gluons

$$
\mathcal{L}_{a G G}=N_{\mathrm{DW}} \frac{a}{F_{a}} \frac{\alpha_{s}}{8 \pi} G_{a \mu \nu} \tilde{G}_{\mu \nu}^{a}=\frac{a}{f_{a}} \frac{\alpha_{s}}{8 \pi} G_{a \mu \nu} \tilde{G}_{\mu \nu}^{a}
$$

defines the axion decay constant $f_{a}=\frac{F_{a}}{N_{\mathrm{DW}}}$. Now: domain wall number

Hadronic/KSVZ axion

Kim `79, Shifman, Vainshtein, and Zakharov ` 80
Yet unknown heavy quarks run in the loop.

DFSZ axion

Dine, Fischler, and Srednicki `81, Zhitnitsky ` 80
Ordinary SM quarks
run in the loop. $N_{D w}=3$ or 6 .
N.B. Both heavy and SM quarks, or only a part of SM quarks may run in the loop, which help to avoid the domain wall problem by $N_{D W}=1$.

Axion Interactions

- Photons

$$
\mathcal{L}_{a \gamma \gamma}=\frac{g_{a \gamma \gamma}}{4} a F_{\mu \nu} \tilde{F}_{\mu \nu}=-g_{a \gamma \gamma} a \vec{E} \cdot \vec{B}
$$

$$
g_{a \gamma \gamma}=\frac{\alpha}{2 \pi f_{a}}\left(\frac{E}{N}-1.9\right) \quad \begin{aligned}
& \mathrm{E} \text { and } \mathrm{N} \text { are } \mathrm{EM} \text { and color anomaly factors } \\
& \text { of the } \mathrm{PQ} \text { current. }
\end{aligned}
$$

- Electrons

$$
\begin{aligned}
& \mathcal{L}_{a e e}=\frac{C_{e}}{2 f_{a}} \partial_{\mu} a\left(\bar{\Psi}_{e} \gamma^{\mu} \gamma_{5} \Psi_{e}\right)=-i g_{a e e} a\left(\bar{\Psi}_{e} \gamma_{5} \Psi_{e}\right)+\cdots \\
& g_{a e e} \equiv \frac{C_{e} m_{e}}{f_{a}} \quad \begin{array}{l}
C_{e}=\frac{\cos ^{2} \beta}{3} \text { for DFSZ axion. } \\
\begin{array}{l}
\text { Model-dependent. Coupling to electrons appear } \\
\text { only at loop-level in the hadronic axion. }
\end{array}
\end{array}
\end{aligned}
$$

- Nucleons

$$
\mathcal{L}_{a N N}=\sum_{N=p, n} \frac{C_{N}}{2 f_{a}} \partial_{\mu} a\left(\bar{\Psi}_{N} \gamma^{\mu} \gamma_{5} \Psi_{N}\right)
$$

Production

	Terrestrial	Celestial	Cosmolog
亠	LSTW, Photon pol. ALPS, PVLAS, SAPPHIRES 三	Solar axion CAST, IAXO, taste	
$\stackrel{\rightharpoonup}{\otimes}$	A		

Constraints on axion-photon coupling

figure taken from Carosi et al, 1309.7035

Constraints on axion-photon coupling

figure taken from Carosi et al, 1309.7035

- Natural inflation

$$
V=\Lambda^{4}\left(1-\cos \left(\frac{\phi}{f}\right)\right)
$$

Only large-field inflation is possible
 with a single cosine term.

- Super-Planckian decay constant required:

$$
f \gtrsim 5 M_{P}
$$

-Predicted (ns,r) are not favored by CMB obs. :)

Axion hilltop inflation can be realized with (at least) two cosine terms: "Multi-natural inflation"

$$
\begin{aligned}
V_{\mathrm{inf}}(\phi) & =\Lambda^{4}\left(\cos \left(\frac{\phi}{f}+\theta\right)-\frac{\kappa}{n^{2}} \cos \left(\frac{n \phi}{f}\right)\right)+\text { const. } \\
& =V_{0}-\lambda \phi^{4}-\theta \frac{\Lambda^{4}}{f} \phi+(\kappa-1) \frac{\Lambda^{4}}{2 f^{2}} \phi^{2}+\cdots \quad \lambda \sim \frac{\Lambda^{4}}{f^{4}}
\end{aligned}
$$

Axion hilltop inflation can be realized with (at least) two cosine terms: "Multi-natural inflation"

$$
\begin{aligned}
V_{\mathrm{inf}}(\phi) & =\Lambda^{4}\left(\cos \left(\frac{\phi}{f}+\theta\right)-\frac{\kappa}{n^{2}} \cos \left(\frac{n \phi}{f}\right)\right)+\text { const. } \\
& =V_{0}-\lambda \phi^{4}-\theta \frac{\Lambda^{4}}{f} \phi+(\kappa-1) \frac{\Lambda^{4}}{2 f^{2}} \phi^{2}+\cdots \quad \lambda \sim \frac{\Lambda^{4}}{f^{4}}
\end{aligned}
$$

Even n

Axion hilltop inflation can be realized with (at least) two cosine terms: "Multi-natural inflation"

$$
\begin{aligned}
V_{\mathrm{inf}}(\phi) & =\Lambda^{4}\left(\cos \left(\frac{\phi}{f}+\theta\right)-\frac{\kappa}{n^{2}} \cos \left(\frac{n \phi}{f}\right)\right)+\text { const. } \\
& =V_{0}-\lambda \phi^{4}-\theta \frac{\Lambda^{4}}{f} \phi+(\kappa-1) \frac{\Lambda^{4}}{2 f^{2}} \phi^{2}+\cdots \quad \lambda \sim \frac{\Lambda^{4}}{f^{4}}
\end{aligned}
$$

- Inflaton potential is upside-down sym.
- In particular, inflaton is light both during inflation and in the true min.

$$
m_{\phi}^{2}=V^{\prime \prime}\left(\phi_{\min }\right)=-V^{\prime \prime}\left(\phi_{\max }\right)
$$

Flatness implies longevity.

-Relation between mass and decay constant

The CMB normalization of density perturbation and the spectral index fix the relation between m_{ϕ} and f,

$$
\begin{array}{ll}
\lambda \sim\left(\frac{\Lambda}{f}\right)^{4} \sim 10^{-12} & : \text { CMB normalization } \\
\Lambda^{4} \sim H_{\text {inf }}^{2} M_{p l}^{2} & : \text { Friedman eq. } \\
m_{\phi} \sim 0.1 H_{\text {inf }} & : \text { Scalar spectral index } \\
& \text { cf. } n_{s} \simeq 1+2 \eta\left(\phi_{+}\right)=1+\frac{2 V^{\prime \prime}\left(\phi_{+}\right)}{H_{\text {inf }}^{2}} \simeq 0.968
\end{array}
$$

$$
f \sim 10^{7} \mathrm{GeV} \sqrt{\frac{3}{n}}\left(\frac{m_{\phi}}{0.1 \mathrm{eV}}\right)^{\frac{1}{2}}
$$

-Inflaton (ALP) mass and coupling to photons

$$
\mathcal{L}=\frac{g_{\phi \gamma \gamma}}{4} \phi F_{\mu \nu} \tilde{F}^{\mu \nu} \quad g_{\phi \gamma \gamma}=\frac{c_{\gamma} \alpha}{\pi f} \quad c_{\gamma}=\sum_{i} q_{i} Q_{i}^{2}
$$

$$
\psi_{i} \rightarrow e^{i \beta q_{i} \gamma_{5} / 2} \psi_{i}
$$

$$
\phi \rightarrow \phi+\beta f
$$

$m_{\phi}[\mathrm{eV}]$
Daido, FT, and Yin 1702.03284 Limits taken from Essig et al 1311.0029

- Inflaton (ALP) mass and coupling to photons

$$
\mathcal{L}=\frac{g_{\phi \gamma \gamma}}{4} \phi F_{\mu \nu} \tilde{F}^{\mu \nu} \quad g_{\phi \gamma \gamma}=\frac{c_{\gamma} \alpha}{\pi f} \quad c_{\gamma}=\sum_{i} q_{i} Q_{i}^{2}
$$

Reheating and ALP DM

Inflaton (ALP) condensate
$\mathcal{L}=\frac{g_{\phi \gamma \gamma}}{4} \phi F_{\mu \nu} \tilde{F}^{\mu \nu}$

Small-scale structure constraint on ALP CDM

Production

	Terrestrial	Celestial	Cosmolog
亠	LSTW, Photon pol. ALPS, PVLAS, SAPPHIRES 三	Solar axion CAST, IAXO, taste	
$\stackrel{\rightharpoonup}{\otimes}$	A		

- Axion mediated force

$$
\begin{array}{r}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m_{\phi}^{2} \phi^{2}+\sum_{j}\left(\bar{\psi}_{j}\left(i \gamma^{\mu} \partial_{\mu}-M_{j}\right) \psi_{j}-i g_{P j} \phi \bar{\psi}_{j} \gamma_{5} \psi_{j}\right. \\
\left.-g_{S j} \phi \bar{\psi}_{j} \psi_{j}\right)
\end{array}
$$

- Axion mediated force

- Monopole-dipole potential

$$
V(\vec{r})=\frac{g_{S 1} g_{P 2}}{4 \pi M_{2}}\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\left(\frac{m_{\phi}}{r}+\frac{1}{r^{2}}\right) e^{-m_{\phi} r},
$$

- Dipole-dipole potential

$$
\begin{aligned}
V(\vec{r})=\frac{g_{P 1} g_{P 2} \exp \left(-m_{\phi} r\right)}{4 \pi M_{1} M_{2}}[& \left(\overrightarrow{\hat{S}}_{1} \cdot \overrightarrow{\hat{S}}_{2}\right)\left(\frac{m_{\phi}}{r^{2}}+\frac{1}{r^{3}}+\frac{4 \pi}{3} \delta^{3}(r)\right) \\
& \left.-\left(\overrightarrow{\hat{S}}_{1} \cdot \hat{r}\right)\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\left(\frac{m_{\phi}^{2}}{r}+\frac{3 m_{\phi}}{r^{2}}+\frac{3}{r^{3}}\right)\right]
\end{aligned}
$$

where $\hat{r} \equiv \vec{r} / r$ is the unit vector.

$$
\rightarrow \frac{g_{P 1} g_{P 2}}{4 \pi M_{1} M_{2} r^{3}}\left[\overrightarrow{\tilde{S}}_{1} \cdot \overrightarrow{\hat{S}}_{2}-3\left(\overrightarrow{\tilde{S}}_{1} \cdot \hat{r}\right)\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\right], \quad\left(m_{\phi} \rightarrow 0\right)
$$

Is the sign correct?

$$
V(\vec{r}) \rightarrow \pm \frac{g_{P 1} g_{P 2}}{4 \pi M_{1} M_{2} r^{3}}\left[\vec{S}_{1} \cdot \overrightarrow{\hat{S}}_{2}-3\left(\overrightarrow{\hat{S}}_{1} \cdot \hat{r}\right)\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\right], \quad\left(m_{\phi} \rightarrow 0\right)
$$

Is the sign correct?

$$
V(\vec{r}) \rightarrow \pm \frac{g_{P 1} g_{P 2}}{4 \pi M_{1} M_{2} r^{3}}\left[\vec{S}_{1} \cdot \overrightarrow{\hat{S}}_{2}-3\left(\overrightarrow{\hat{S}}_{1} \cdot \hat{r}\right)\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\right], \quad\left(m_{\phi} \rightarrow 0\right)
$$

(Theory)

- Moody and Wilczek, `84
- Arvanitaki and Geraci,`14
(Experiments)
- Vasilakis et al,0809.4700
- Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779
(Review)
- Adelberger et al, 2009
- Marsh,1510.07633
- Particle Data Group
(Theory)
- Dobrescu and Mocioiu, hepph/0605342

Is the sign correct?

$$
V(\vec{r}) \rightarrow \frac{g_{P 1} g_{P 2}}{4 \pi M_{1} M_{2} r^{3}}\left[\vec{S}_{1} \cdot \overrightarrow{\hat{S}}_{2}-3\left(\overrightarrow{\hat{S}}_{1} \cdot \hat{r}\right)\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\right], \quad\left(m_{\phi} \rightarrow 0\right)
$$

- Arvanitaki and Geraci,`14
(Experiments)
- Vasilakis et al,0809.4700
- Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779
(Review)
- Adelberger et al, 2009
- Marsh, 1510.07633
- Particle Data Group

Is the sign correct?

$$
V(\vec{r}) \rightarrow-\frac{g_{P 1} g_{P 2}}{4 \pi M_{1} M_{2} r^{3}}\left[\vec{S}_{1} \cdot \overrightarrow{\hat{S}}_{2}-3\left(\overrightarrow{\hat{S}}_{1} \cdot \hat{r}\right)\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\right], \quad\left(m_{\phi} \rightarrow 0\right)
$$

- Arvanitaki and Geraci,`14
(Experiments)
- Vasilakis et al,0809.4700
- Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779
(Review)
- Adelberger et al, 2009
- Marsh, 1510.07633
- Particle Data Group

Is the sign correct?

$$
V(\vec{r}) \rightarrow-\frac{g_{P 1} g_{P 2}}{4 \pi M_{1} M_{2} r^{3}}\left[\overrightarrow{\hat{S}}_{1} \cdot \overrightarrow{\hat{S}}_{2}-3\left(\overrightarrow{\hat{S}}_{1} \cdot \hat{r}\right)\left(\overrightarrow{\hat{S}}_{2} \cdot \hat{r}\right)\right], \quad\left(m_{\phi} \rightarrow 0\right)
$$

- Arvanitaki and Geraci,` 14
(Experiments)
- Vasilakis et al,0809.4700
- Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779
(Review)
- Adelberger et al, 2009
- Marsh, 1510.07633
(Theory)
- Dobrescu and Mocioiu, hepph/0605342
- Daido and FT, 1704.00155
- Kahlhoefer et al, 1704.02149

Axion exchange: -

Photon exchange: +
Graviton exchange: -

The sign of the dipole-dipole potential changes depending on spin of the mediating particle.

- Axion exchange
- Photon exchange
- Graviton exchange

Production

	Terrestrial	Celestial	Cosmolog
亠	LSTW, Photon pol. ALPS, PVLAS, SAPPHIRES 三	Solar axion CAST, IAXO, taste	
$\stackrel{\rightharpoonup}{\otimes}$	A		

Axion isocurvature

Adiabatic

DM/baryon
$S=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{\delta \Omega_{a}}{\Omega_{a}}=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{2 \delta \theta_{i}}{\theta_{i}}=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{H_{\mathrm{inf}}}{\pi \theta_{i} f_{a}}$

$$
\beta_{\mathrm{iso}}=\frac{\mathcal{P}_{S}}{\mathcal{P}_{\mathcal{R}}+\mathcal{P}_{S}}<0.038 \quad(95 \% \mathrm{CL}) \quad \begin{aligned}
& \text { Planck 2015 } \\
& \text { (Planck TT, TE, EE }+ \text { lowP) }
\end{aligned}
$$

Axion isocurvature

Adiabatic

Isocurvature

ρ photon

abundance x

$$
S=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{\delta \Omega_{a}}{\Omega_{a}}=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{2 \delta \theta_{i}}{\theta_{i}}=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{H_{\mathrm{inf}}}{\pi \theta_{i} f_{a}}
$$

$$
\beta_{\text {iso }}=\frac{\mathcal{P}_{S}}{\mathcal{P}_{\mathcal{R}}+\mathcal{P}_{S}}<0.038 \quad(95 \% \mathrm{CL}) \underset{\substack{\text { Planck 2015 } \\ \text { (Planck TT, TE, EE }+ \text { lowP) }}}{\substack{\text {. } \\ \hline}}
$$

Axion isocurvature

Adiabatic

Isocurvature

ρ photon

abundance

fluctuations

$$
S=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{\delta \Omega_{a}}{\Omega_{a}}=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{2 \delta \theta_{i}}{\theta_{i}}=\frac{\Omega_{a}}{\Omega_{\mathrm{CDM}}} \frac{H_{\mathrm{inf}}}{\pi \theta_{i} f_{a}}
$$

$$
\beta_{\mathrm{iso}}=\frac{\mathcal{P}_{S}}{\mathcal{P}_{\mathcal{R}}+\mathcal{P}_{S}}<0.038 \quad(95 \% \mathrm{CL}) \underset{\substack{\text { Planck 2015 } \\ \text { (Planck TT, TE, EE }+ \text { lowP) }}}{\substack{\text { P }}}
$$

CMB angular power spectrum

Isocurvature constraint on Hinf

Axion DM is in conflict with high-scale inflation

Isocurvature constraint on Hinf

Axion DM is in conflict with high-scale inflation

Solutions to axion isocurvature

The simplest solution is to restore $U(1) \mathrm{PQ}$ symmetry.
Linde and Lyth `90 Lyth and Stewart `92

Figure taken from
M. Kawasaki's slide

No axion during inflation!

Solutions to axion isocurvature

The simplest solution is to restore $\mathrm{U}(1) \mathrm{PQ}$ symmetry.

Axions are copiously produced by the topological defects, and only $f_{a}=O\left(10^{10}\right) \mathrm{GeV}$ is allowed.

Solutions to axion isocurvature

Or explicitly break the PQ symmetry and make axion sufficiently heavy: $m_{a}^{2} \gtrsim H_{\mathrm{inf}}^{2}$
. Stronger QCD during inflation cf. Dvali. 95, Jeong, FT 1304.8131
Choi et al, 1505.00306

- Extra explicit PQ breaking e.g. the Witten effect of hidden monopoles

Dine, Anisimov hep-ph/0405256 Higaki, Jeong, FT, 1403.4186,
Barr and J.E.Kim, 1407.4311
FT and Yamada 1507.06387
Kawasaki, FT, Yamada, 1511.05030 Nomura, Rajendran, Sanches,
1511.06347
N.B. The explicit breaking should be sufficiently suppressed in the present Universe.

Summary

- Axion is a plausible candidate for BSM.

-The QCD axion or axion-like particle may constitute dark matter.
-The ALP can even unify the inflaton and DM:

$$
m_{\phi}=\mathcal{O}(0.01-0.1) \mathrm{eV} \quad g_{\phi \gamma \gamma}=\mathcal{O}\left(10^{-11}\right) \mathrm{GeV}^{-1}
$$

within the reach of IAXO, TASTE, and laser exp.
-The axion DM, if found, will have implications for the early Universe: e.g. high-scale inflation.
-There are many on-going and planned axion search experiments.

