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The Strong CP Problem
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Experimental bound from neutron electric dipole 
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Why     is so small is the strong CP problem.✓
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cf. More precisely, the physical strong CP phase is

which makes the problem even more puzzling.



In the Peccei-Quinn solution, the strong CP phase is 
promoted to a dynamical variable:

Peccei, Quinn `77, Weinberg `78, Wilczek `78
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Axion-like particles (ALPS) do not satisfy the above relation.
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Axion mass：



The axion dark matter (DM) is produced as coherent 
oscillations [misalignment mechanism]. 

a

CDM

Axion Dark Matter

Preskill, Wise, Wilczek `83, Abbott, Sikivie, `83, Dine, Fischler, `83

Bae, Huh, Kim `08, Visinelli and Gondolo `08
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Anharmonic effect



•Gluons

defines the axion decay constant          　  . NDW: domain wall number

Figure taken from 1210.3196 

Hadronic/KSVZ axion

Yet unknown heavy 
quarks run in the loop.

DFSZ axion

Ordinary SM quarks 
run in the loop.

 Dine, Fischler, and Srednicki `81,  Zhitnitsky `80Kim `79,  Shifman, Vainshtein, and Zakharov `80

N.B. Both heavy and SM quarks, or only a part of SM quarks may run in the loop, 
which help to avoid the domain wall problem by NDW = 1.
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Axion Interactions

http://arxiv.org/abs/arXiv:1210.3196


•Photons

•Electrons

•Nucleons
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Constraints on axion-photon coupling

figure taken from Carosi et al, 1309.7035



Constraints on axion-photon coupling

figure taken from Carosi et al, 1309.7035

ALP 
miracle



Inflation

Dark Matter



Freese, Frieman, Olinto `90

•Super-Planckian decay constant 
required: 

•Predicted (ns,r) are not favored 
by CMB obs.

Only large-field inflation is possible  
with a single cosine term.

Planck  2015

Natural inflation

�/f

•Natural inflation



Axion hilltop inflation can be realized with (at least) two cosine 
terms:  “Multi-natural inflation”

•Axion hilltop inflation Czerny, FT 1401.5212,  
Czerny, Higaki, FT 1403.0410, 1403.5883 

Croon and Sanz, 1411.7809 
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•Axion hilltop inflation Czerny, FT 1401.5212,  
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• Inflaton potential is upside-down sym.

• In particular, inflaton is light both 
during inflation and in the true min.

Flatness implies longevity.
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Axion hilltop inflation can be realized with (at least) two cosine 
terms:  “Multi-natural inflation”
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•Relation between mass and decay constant
The CMB normalization of density perturbation and  
the spectral index fix the relation between        and    ,m� f
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•Inflaton (ALP) mass and coupling to photons
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•Inflaton (ALP) mass and coupling to photons
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Reheating and ALP DM
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•Axion mediated force

φ(q)

ψs1
1 (p1)

ψ̄
s′1
1 (p′1)

ψs2
2 (p2)

ψ̄
s′2
2 (p′2)

gP1γ5 gP2γ5

L =
1

2
@µ�@

µ�� 1

2
m2

��
2 +

X

j

�
 ̄j(i�

µ@µ �Mj) j � igPj�  ̄j�5 j

�

Moody and Wilczek`84

�gSj�  ̄j j

�

gP1, gS1



•Axion mediated force

where we have taken the nonrelativistic limit in the second equality. Then, by taking
the Fourier transform of the amplitude, we obtain
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where ⃗̂S1 and ⃗̂S2 are the spin operators of the fermions ψ1 and ψ2, respectively. In
the literature, the spin operators are often represented by σ⃗1 and σ⃗2, and they are

related as ⃗̂S1 = σ⃗1/2 and ⃗̂S2 = σ⃗2/2. Finally, using the formula
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we arrive at the dipole-dipole potential induced by axion exchange,
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where r̂ ≡ r⃗/r is the unit vector. In the massless limit, we obtain

V (r⃗) → − gP1gP2
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[
⃗̂S1 · ⃗̂S2 − 3( ⃗̂S1 · r̂)( ⃗̂S2 · r̂)
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where we have dropped the contact term. The form of the potential in the massless
limit should be compared with the standard magnetic dipole-dipole interaction,

Hµµ = −3(µ⃗1 · r̂)(µ⃗2 · r̂)− µ⃗1 · µ⃗2

4πr3
, (22)

where µ⃗1 and µ⃗2 are the magnetic moments and we have omitted the Fermi contact
term. The magnetic moment for an elementary Dirac particle is related to its spin
as

µ⃗ = g
e

2m
⃗̂S, (23)

where m and g are the mass and g-factor of the particle, respectively. Notice the
overall sign difference between (22) and (21) when gP1 = gP2.1

1 It is well-known that the exchange of a scalar particle produces an attractive force (cf. Eq. (8)),
of a spin 1 particle (e.g. photon) a repulsive force between likes, and of a spin 2 particle (graviton)
an attractive force. A similar sign change of the potential due to the different spin of the mediating
particle seems to arise also for the spin-dependent force. We thank Georg Raffelt for pointing out
this issue.
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•Dipole-dipole potential
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this issue.
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where we have taken the nonrelativistic limit in the second equality. Then, by taking
the Fourier transform of the amplitude, we obtain
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where ⃗̂S1 and ⃗̂S2 are the spin operators of the fermions ψ1 and ψ2, respectively. In
the literature, the spin operators are often represented by σ⃗1 and σ⃗2, and they are

related as ⃗̂S1 = σ⃗1/2 and ⃗̂S2 = σ⃗2/2. Finally, using the formula
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we arrive at the dipole-dipole potential induced by axion exchange,
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where r̂ ≡ r⃗/r is the unit vector. In the massless limit, we obtain
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where we have dropped the contact term. The form of the potential in the massless
limit should be compared with the standard magnetic dipole-dipole interaction,

Hµµ = −3(µ⃗1 · r̂)(µ⃗2 · r̂)− µ⃗1 · µ⃗2

4πr3
, (22)

where µ⃗1 and µ⃗2 are the magnetic moments and we have omitted the Fermi contact
term. The magnetic moment for an elementary Dirac particle is related to its spin
as

µ⃗ = g
e

2m
⃗̂S, (23)

where m and g are the mass and g-factor of the particle, respectively. Notice the
overall sign difference between (22) and (21) when gP1 = gP2.1

1 It is well-known that the exchange of a scalar particle produces an attractive force (cf. Eq. (8)),
of a spin 1 particle (e.g. photon) a repulsive force between likes, and of a spin 2 particle (graviton)
an attractive force. A similar sign change of the potential due to the different spin of the mediating
particle seems to arise also for the spin-dependent force. We thank Georg Raffelt for pointing out
this issue.
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where we have taken the nonrelativistic limit in the second equality. Then, by taking
the Fourier transform of the amplitude, we obtain
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where ⃗̂S1 and ⃗̂S2 are the spin operators of the fermions ψ1 and ψ2, respectively. In
the literature, the spin operators are often represented by σ⃗1 and σ⃗2, and they are

related as ⃗̂S1 = σ⃗1/2 and ⃗̂S2 = σ⃗2/2. Finally, using the formula
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we arrive at the dipole-dipole potential induced by axion exchange,
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where r̂ ≡ r⃗/r is the unit vector. In the massless limit, we obtain

V (r⃗) → − gP1gP2

4πM1M2r3

[
⃗̂S1 · ⃗̂S2 − 3( ⃗̂S1 · r̂)( ⃗̂S2 · r̂)

]
, (mφ → 0) (21)

where we have dropped the contact term. The form of the potential in the massless
limit should be compared with the standard magnetic dipole-dipole interaction,

Hµµ = −3(µ⃗1 · r̂)(µ⃗2 · r̂)− µ⃗1 · µ⃗2

4πr3
, (22)

where µ⃗1 and µ⃗2 are the magnetic moments and we have omitted the Fermi contact
term. The magnetic moment for an elementary Dirac particle is related to its spin
as

µ⃗ = g
e

2m
⃗̂S, (23)

where m and g are the mass and g-factor of the particle, respectively. Notice the
overall sign difference between (22) and (21) when gP1 = gP2.1

1 It is well-known that the exchange of a scalar particle produces an attractive force (cf. Eq. (8)),
of a spin 1 particle (e.g. photon) a repulsive force between likes, and of a spin 2 particle (graviton)
an attractive force. A similar sign change of the potential due to the different spin of the mediating
particle seems to arise also for the spin-dependent force. We thank Georg Raffelt for pointing out
this issue.
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where we have taken the nonrelativistic limit in the second equality. Then, by taking
the Fourier transform of the amplitude, we obtain
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where ⃗̂S1 and ⃗̂S2 are the spin operators of the fermions ψ1 and ψ2, respectively. In
the literature, the spin operators are often represented by σ⃗1 and σ⃗2, and they are

related as ⃗̂S1 = σ⃗1/2 and ⃗̂S2 = σ⃗2/2. Finally, using the formula
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we arrive at the dipole-dipole potential induced by axion exchange,
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where r̂ ≡ r⃗/r is the unit vector. In the massless limit, we obtain

V (r⃗) → − gP1gP2
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[
⃗̂S1 · ⃗̂S2 − 3( ⃗̂S1 · r̂)( ⃗̂S2 · r̂)
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where we have dropped the contact term. The form of the potential in the massless
limit should be compared with the standard magnetic dipole-dipole interaction,

Hµµ = −3(µ⃗1 · r̂)(µ⃗2 · r̂)− µ⃗1 · µ⃗2

4πr3
, (22)

where µ⃗1 and µ⃗2 are the magnetic moments and we have omitted the Fermi contact
term. The magnetic moment for an elementary Dirac particle is related to its spin
as

µ⃗ = g
e

2m
⃗̂S, (23)

where m and g are the mass and g-factor of the particle, respectively. Notice the
overall sign difference between (22) and (21) when gP1 = gP2.1

1 It is well-known that the exchange of a scalar particle produces an attractive force (cf. Eq. (8)),
of a spin 1 particle (e.g. photon) a repulsive force between likes, and of a spin 2 particle (graviton)
an attractive force. A similar sign change of the potential due to the different spin of the mediating
particle seems to arise also for the spin-dependent force. We thank Georg Raffelt for pointing out
this issue.
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where we have taken the nonrelativistic limit in the second equality. Then, by taking
the Fourier transform of the amplitude, we obtain
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where ⃗̂S1 and ⃗̂S2 are the spin operators of the fermions ψ1 and ψ2, respectively. In
the literature, the spin operators are often represented by σ⃗1 and σ⃗2, and they are

related as ⃗̂S1 = σ⃗1/2 and ⃗̂S2 = σ⃗2/2. Finally, using the formula
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where r̂ ≡ r⃗/r is the unit vector. In the massless limit, we obtain
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⃗̂S1 · ⃗̂S2 − 3( ⃗̂S1 · r̂)( ⃗̂S2 · r̂)

]
, (mφ → 0) (21)

where we have dropped the contact term. The form of the potential in the massless
limit should be compared with the standard magnetic dipole-dipole interaction,

Hµµ = −3(µ⃗1 · r̂)(µ⃗2 · r̂)− µ⃗1 · µ⃗2

4πr3
, (22)

where µ⃗1 and µ⃗2 are the magnetic moments and we have omitted the Fermi contact
term. The magnetic moment for an elementary Dirac particle is related to its spin
as

µ⃗ = g
e

2m
⃗̂S, (23)

where m and g are the mass and g-factor of the particle, respectively. Notice the
overall sign difference between (22) and (21) when gP1 = gP2.1

1 It is well-known that the exchange of a scalar particle produces an attractive force (cf. Eq. (8)),
of a spin 1 particle (e.g. photon) a repulsive force between likes, and of a spin 2 particle (graviton)
an attractive force. A similar sign change of the potential due to the different spin of the mediating
particle seems to arise also for the spin-dependent force. We thank Georg Raffelt for pointing out
this issue.
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where we have taken the nonrelativistic limit in the second equality. Then, by taking
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where ⃗̂S1 and ⃗̂S2 are the spin operators of the fermions ψ1 and ψ2, respectively. In
the literature, the spin operators are often represented by σ⃗1 and σ⃗2, and they are
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where we have dropped the contact term. The form of the potential in the massless
limit should be compared with the standard magnetic dipole-dipole interaction,

Hµµ = −3(µ⃗1 · r̂)(µ⃗2 · r̂)− µ⃗1 · µ⃗2

4πr3
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where µ⃗1 and µ⃗2 are the magnetic moments and we have omitted the Fermi contact
term. The magnetic moment for an elementary Dirac particle is related to its spin
as

µ⃗ = g
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2m
⃗̂S, (23)

where m and g are the mass and g-factor of the particle, respectively. Notice the
overall sign difference between (22) and (21) when gP1 = gP2.1

1 It is well-known that the exchange of a scalar particle produces an attractive force (cf. Eq. (8)),
of a spin 1 particle (e.g. photon) a repulsive force between likes, and of a spin 2 particle (graviton)
an attractive force. A similar sign change of the potential due to the different spin of the mediating
particle seems to arise also for the spin-dependent force. We thank Georg Raffelt for pointing out
this issue.
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Axion exchange: - 
Photon exchange: + 
Graviton exchange: -



•Graviton exchange

•Axion exchange

•Photon exchange

The sign of the dipole-dipole potential changes  
depending on spin of the mediating particle.
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Solutions to axion isocurvature
The simplest solution is to restore U(1)PQ symmetry.

Figure taken from 
M. Kawasaki’s slide

Linde and Lyth `90 Lyth and Stewart `92

No axion during inflation!



Axions are copiously produced by the topological  
defects, and only fa = O(1010) GeV is allowed.

Hiramatsu, Kawasaki, Saikawa and Sekiguchi, 1202.5851,1207.3166

Solutions to axion isocurvature
The simplest solution is to restore U(1)PQ symmetry.

Linde and Lyth `90 Lyth and Stewart `92



Or explicitly break the PQ symmetry and make 
axion sufficiently heavy：
• Stronger QCD during inflation 

• Extra explicit PQ breaking 

Jeong, FT 1304.8131 
Choi et al, 1505.00306

Higaki, Jeong, FT, 1403.4186, 
Barr and  J.E.Kim, 1407.4311  
FT and Yamada 1507.06387 

Dine, Anisimov hep-ph/0405256  

cf. Dvali, `95, 

m2
a & H2

inf

a

N.B. The explicit breaking should be sufficiently  
suppressed in the present Universe.

Solutions to axion isocurvature

e.g. the Witten effect of hidden monopoles
Kawasaki, FT, Yamada, 1511.05030
Nomura, Rajendran, Sanches,  

1511.06347 

http://arxiv.org/abs/arXiv:1505.00306
http://arxiv.org/abs/arXiv:1407.4311
http://arxiv.org/abs/arXiv:1511.06347


Summary

•Axion is a plausible candidate for BSM.
•The QCD axion or axion-like particle may constitute 
dark matter.

•The ALP can even unify the inflaton and DM:

within the reach of IAXO, TASTE, and laser exp.

•There are many on-going and planned axion search 
experiments.

g��� = O(10�11)GeV�1,m� = O(0.01� 0.1) eV

•The axion DM, if found, will have implications for the 
early Universe: e.g. high-scale inflation.


