

Axions

Oct. 17 2017 @KavlilPMU 10th Anniversary Symposium

Fumi Takahashi (Tohoku)

The Strong CP Problem

$$\mathcal{L}_{\theta} = \theta \frac{g_s^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$$

Experimental bound from neutron electric dipole moment reads

$$|\theta| < 10^{-10}$$

Why θ is so small is the strong CP problem.

cf. More precisely, the physical strong CP phase is

$$\bar{\theta} \equiv \theta - \arg \det \left(M_u M_d \right)$$

which makes the problem even more puzzling.

In the Peccei-Quinn solution, the strong CP phase is promoted to a dynamical variable:

Peccei, Quinn `77, Weinberg `78, Wilczek `78

Axion-like particles (ALPS) do not satisfy the above relation.

Axion Dark Matter

The axion dark matter (DM) is produced as coherent oscillations [misalignment mechanism].

Preskill, Wise, Wilczek `83, Abbott, Sikivie, `83, Dine, Fischler, `83

$$\Omega_a h^2 \simeq 0.11 \,\theta_i^2 C(\theta_i) \left(\frac{f_a}{5 \times 10^{11} \,\text{GeV}}\right)^{1.184} \text{CDM}$$

Anharmonic effect

Bae, Huh, Kim `08, Visinelli and Gondolo `08

$$T \gg \Lambda_{\rm QCD}$$

$$T \gg \Lambda_{\rm QCD}$$

$$\theta_i = a/f_a$$

Axion Interactions

<u>N.B.</u> Both heavy and SM quarks, or only a part of SM quarks may run in the loop, which help to avoid the domain wall problem by $N_{DW} = 1$.

Axion Interactions

• Photons

$$\mathcal{L}_{a\gamma\gamma} = \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}_{\mu\nu} = -g_{a\gamma\gamma} a \vec{E} \cdot \vec{B}$$

$$g_{a\gamma\gamma} = \frac{\alpha}{2\pi f_a} \left(\frac{E}{N} - 1.9\right)$$

E and N are EM and color anomaly factors of the PQ current.

• Electrons

$$\begin{split} \mathcal{L}_{aee} &= \frac{C_e}{2f_a} \partial_{\mu} a \, \left(\bar{\Psi}_e \gamma^{\mu} \gamma_5 \Psi_e \right) = -ig_{aee} a \left(\bar{\Psi}_e \gamma_5 \Psi_e \right) + \cdots \\ g_{aee} &\equiv \frac{C_e m_e}{f_a} \qquad C_e = \frac{\cos^2 \beta}{3} \, \text{ for DFSZ axion.} \\ \text{Model-dependent. Coupling to electrons appear} \\ &\text{only at loop-level in the hadronic axion.} \end{split}$$

Nucleons

$$\mathcal{L}_{aNN} = \sum_{N=p,n} \frac{C_N}{2f_a} \partial_\mu a \, \left(\bar{\Psi}_N \gamma^\mu \gamma_5 \Psi_N \right)$$

AND A CONTRACT OF A CONTRACT O		Production			
		Terrestrial	Celestial	Cosmological	
Detection	Direct	LSTW, Photon pol. ALPS, PVLAS, SAPPHIRES	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	Axion DM Admx, Capp, Orpheus Madmax, LC-circuits, Casper, Lux, XMass, Edelwise, Xenonioo	
	Indirect	<section-header><section-header></section-header></section-header>	Excessive cooling of WD, RGB, HB, and NS	Isocurvature, DR, HDM, caustics, Spectral irreg. transparencv Fermi, Chandra, IACT CMB, lensing, shear	

Constraints on axion-photon coupling

figure taken from Carosi et al, 1309.7035

Constraints on axion-photon coupling

figure taken from Carosi et al, 1309.7035

Inflation

Dark Matter

Dark Matter 26.8% Ordinary Matter 4.9% Dark Energy 68.3%

-

NASA/WMAP Science Team

Natural inflation

$$V = \Lambda^4 \left(1 - \cos\left(\frac{\phi}{f}\right) \right)$$

Only large-field inflation is possible with a single cosine term.

- \cdot Super-Planckian decay constant required: $f\gtrsim 5M_P$
- Predicted (ns,r) are not favored by CMB obs.

Freese, Frieman, Olinto `90

Planck 2015

Axion hilltop inflation

Axion hilltop inflation can be realized with (at least) two cosine terms: "*Multi-natural inflation*"

$$V_{inf}(\phi) = \Lambda^4 \left(\cos\left(\frac{\phi}{f} + \theta\right) - \frac{\kappa}{n^2} \cos\left(\frac{n\phi}{f}\right) \right) + \text{const.}$$
$$= V_0 - \lambda \phi^4 - \theta \frac{\Lambda^4}{f} \phi + (\kappa - 1) \frac{\Lambda^4}{2f^2} \phi^2 + \cdots \qquad \lambda \sim \frac{\Lambda^4}{f^4}$$

Axion hilltop inflation

Axion hilltop inflation can be realized with (at least) two cosine terms: "*Multi-natural inflation*"

$$V_{inf}(\phi) = \Lambda^4 \left(\cos\left(\frac{\phi}{f} + \theta\right) - \frac{\kappa}{n^2} \cos\left(\frac{n\phi}{f}\right) \right) + \text{const.}$$
$$= V_0 - \lambda \phi^4 - \theta \frac{\Lambda^4}{f} \phi + (\kappa - 1) \frac{\Lambda^4}{2f^2} \phi^2 + \cdots \qquad \lambda \sim \frac{\Lambda^4}{f^4}$$

Axion hilltop inflation

Axion hilltop inflation can be realized with (at least) two cosine terms: "*Multi-natural inflation*"

$$V_{inf}(\phi) = \Lambda^4 \left(\cos\left(\frac{\phi}{f} + \theta\right) - \frac{\kappa}{n^2} \cos\left(\frac{n\phi}{f}\right) \right) + \text{const.}$$
$$= V_0 - \lambda \phi^4 - \theta \frac{\Lambda^4}{f} \phi + (\kappa - 1) \frac{\Lambda^4}{2f^2} \phi^2 + \cdots \qquad \lambda \sim \frac{\Lambda^4}{f^4}$$

- Inflaton potential is upside-down sym.
- In particular, inflaton is light both during inflation and in the true min.

$$m_{\phi}^2 = V''(\phi_{\min}) = -V''(\phi_{\max})$$

Flatness implies longevity.

Relation between mass and decay constant

The CMB normalization of density perturbation and the spectral index fix the relation between m_{ϕ} and f,

$$\lambda \sim \left(\frac{\Lambda}{f}\right)^4 \sim 10^{-12} \quad : \text{CMB normalization}$$
$$\Lambda^4 \sim H_{\text{inf}}^2 M_{pl}^2 \qquad : \text{Friedman eq.}$$
$$m_{\phi} \sim 0.1 H_{\text{inf}} \qquad : \text{Scalar spectral index}$$

cf.
$$n_s \simeq 1 + 2\eta(\phi_*) = 1 + \frac{2}{3} \frac{V''(\phi_*)}{H_{\text{inf}}^2} \simeq 0.968$$

$$f \sim 10^7 \,\text{GeV} \,\sqrt{\frac{3}{n}} \left(\frac{m_\phi}{0.1 \,\text{eV}}\right)^{\frac{1}{2}}$$

Inflaton (ALP) mass and coupling to photons

Inflaton (ALP) mass and coupling to photons

Reheating and ALP DM

Small-scale structure constraint on ALP CDM

AND A CONTRACT OF A CONTRACT O		Production			
		Terrestrial	Celestial	Cosmological	
Detection	Direct	LSTW, Photon pol. ALPS, PVLAS, SAPPHIRES	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	Axion DM Admx, Capp, Orpheus Madmax, LC-circuits, Casper, Lux, XMass, Edelwise, Xenonioo	
	Indirect	<section-header><section-header></section-header></section-header>	Excessive cooling of WD, RGB, HB, and NS	Isocurvature, DR, HDM, caustics, Spectral irreg. transparencv Fermi, Chandra, IACT CMB, lensing, shear	

Moody and Wilczek`84

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} + \sum_{j} \left(\bar{\psi}_{j} (i \gamma^{\mu} \partial_{\mu} - M_{j}) \psi_{j} - i g_{Pj} \phi \, \bar{\psi}_{j} \gamma_{5} \psi_{j} - g_{Sj} \phi \, \bar{\psi}_{j} \psi_{j} \right)$$

$$\overline{\psi}_{1}^{s'_{1}} \left(p'_{1} \right) \qquad \overline{\psi}_{2}^{s'_{2}} \left(p'_{2} \right)$$

$$g_{P1}, g_{S1} \rightarrow - \phi(q) \qquad g_{P2}$$

 $\psi_1^{s_1}(p_1)$ $(\chi_2^{s_2}(p_2))$

Axion mediated force

Moody and Wilczek`84

Monopole-dipole potential

$$V(\vec{r}) = \frac{g_{S1}g_{P2}}{4\pi M_2} (\vec{\hat{S}}_2 \cdot \hat{r}) \left(\frac{m_{\phi}}{r} + \frac{1}{r^2}\right) e^{-m_{\phi}r},$$

Dipole-dipole potential

$$V(\vec{r}) = \frac{g_{P1}g_{P2}\exp(-m_{\phi}r)}{4\pi M_{1}M_{2}} \left[(\hat{\vec{S}}_{1} \cdot \hat{\vec{S}}_{2}) \left(\frac{m_{\phi}}{r^{2}} + \frac{1}{r^{3}} + \frac{4\pi}{3}\delta^{3}(r) \right) - (\hat{\vec{S}}_{1} \cdot \hat{r})(\hat{\vec{S}}_{2} \cdot \hat{r}) \left(\frac{m_{\phi}^{2}}{r} + \frac{3m_{\phi}}{r^{2}} + \frac{3}{r^{3}} \right) \right]$$

where $\hat{r} \equiv \vec{r}/r$ is the unit vector.

$$\rightarrow \frac{g_{P1}g_{P2}}{4\pi M_1 M_2 r^3} \left[\hat{\hat{S}}_1 \cdot \hat{\hat{S}}_2 - 3(\hat{\hat{S}}_1 \cdot \hat{r})(\hat{\hat{S}}_2 \cdot \hat{r}) \right], \qquad (m_\phi \to 0)$$

$$V(\vec{r}) \to \pm \frac{g_{P1}g_{P2}}{4\pi M_1 M_2 r^3} \left[\vec{\hat{S}}_1 \cdot \vec{\hat{S}}_2 - 3(\vec{\hat{S}}_1 \cdot \hat{r})(\vec{\hat{S}}_2 \cdot \hat{r}) \right], \qquad (m_\phi \to 0)$$

$$V(\vec{r}) \to \pm \frac{g_{P1}g_{P2}}{4\pi M_1 M_2 r^3} \left[\hat{\hat{S}}_1 \cdot \hat{\hat{S}}_2 - 3(\hat{\hat{S}}_1 \cdot \hat{r})(\hat{\hat{S}}_2 \cdot \hat{r}) \right], \qquad (m_\phi \to 0)$$

(Theory)

Moody and Wilczek, `84

┿

- Arvanitaki and Geraci, 14
 (Experiments)
- Vasilakis et al,0809.4700
- · Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779(Review)
- Adelberger et al, 2009
- Marsh,1510.07633
- Particle Data Group

(Theory)

 Dobrescu and Mocioiu, hepph/0605342

$$V(\vec{r}) \to \frac{g_{P1}g_{P2}}{4\pi M_1 M_2 r^3} \left[\vec{\hat{S}}_1 \cdot \vec{\hat{S}}_2 - 3(\vec{\hat{S}}_1 \cdot \hat{r})(\vec{\hat{S}}_2 \cdot \hat{r}) \right], \qquad (m_\phi \to 0)$$

(Theory)

Moody and Wilczek, `84

┿

- Arvanitaki and Geraci, 14
 (Experiments)
- Vasilakis et al,0809.4700
- · Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779(Review)
- Adelberger et al, 2009
- Marsh,1510.07633
- Particle Data Group

(Theory)

- Dobrescu and Mocioiu, hepph/0605342
- Daido and FT, 1704.00155
- Kahlhoefer et al, 1704.02149

$$V(\vec{r}) \to -\frac{g_{P1}g_{P2}}{4\pi M_1 M_2 r^3} \left[\vec{\hat{S}}_1 \cdot \vec{\hat{S}}_2 - 3(\vec{\hat{S}}_1 \cdot \hat{r})(\vec{\hat{S}}_2 \cdot \hat{r}) \right], \qquad (m_\phi \to 0)$$

(Theory)

Moody and Wilczek, `84

┿

- Arvanitaki and Geraci, 14
 (Experiments)
- Vasilakis et al,0809.4700
- · Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779(Review)
- Adelberger et al, 2009
- Marsh,1510.07633
- Particle Data Group

(Theory)

- Dobrescu and Mocioiu, hepph/0605342
- Daido and FT, 1704.00155
- Kahlhoefer et al, 1704.02149

$$V(\vec{r}) \to -\frac{g_{P1}g_{P2}}{4\pi M_1 M_2 r^3} \left[\vec{\hat{S}}_1 \cdot \vec{\hat{S}}_2 - 3(\vec{\hat{S}}_1 \cdot \hat{r})(\vec{\hat{S}}_2 \cdot \hat{r}) \right], \qquad (m_\phi \to 0)$$

(Theory)

- Moody and Wilczek, `84
- Arvanitaki and Geraci, 14
 (Experiments)
- Vasilakis et al,0809.4700
- · Ledbetter et al, 1203.6894
- Kotler et al, 1501.07891
- Terrano, Adelberger, Lee, Heckel, 1508.02463
- Ficek et al, 1608.05779(Review)
- Adelberger et al, 2009
- Marsh,1510.07633
- Particle Data Group

(Theory)

- Dobrescu and Mocioiu, hepph/0605342
- Daido and FT, 1704.00155
- Kahlhoefer et al, 1704.02149

Axion exchange: -Photon exchange: + Graviton exchange: - The sign of the dipole-dipole potential changes depending on spin of the mediating particle.

AND A CONTRACT OF A CONTRACT O		Production			
		Terrestrial	Celestial	Cosmological	
Detection	Direct	LSTW, Photon pol. ALPS, PVLAS, SAPPHIRES	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	Axion DM Admx, Capp, Orpheus Madmax, LC-circuits, Casper, Lux, XMass, Edelwise, Xenonioo	
	Indirect	<section-header><section-header></section-header></section-header>	Excessive cooling of WD, RGB, HB, and NS	Isocurvature, DR, HDM, caustics, Spectral irreg. transparencv Fermi, Chandra, IACT CMB, lensing, shear	

Axion isocurvature

Axion isocurvature

Axion isocurvature

CMB angular power spectrum

Isocurvature constraint on Hinf

Isocurvature constraint on Hinf

Solutions to axion isocurvature

The simplest solution is to restore $U(1)_{PQ}$ symmetry.

Linde and Lyth `90 Lyth and Stewart `92

Figure taken from M. Kawasaki's slide

No axion during inflation!

Solutions to axion isocurvature

The simplest solution is to restore $U(1)_{PQ}$ symmetry.

Linde and Lyth `90 Lyth and Stewart `92

Axions are copiously produced by the topological defects, and only $f_a = O(10^{10})$ GeV is allowed.

Hiramatsu, Kawasaki, Saikawa and Sekiguchi, 1202.5851,1207.3166

Solutions to axion isocurvature

Or explicitly break the PQ symmetry and make axion sufficiently heavy : $m_a^2\gtrsim H_{
m inf}^2$

- Stronger QCD during inflation cf. Dvali, `95, Jeong, FT 1304.8131 Choi et al, 1505.00306
- Extra explicit PQ breaking
 e.g. the Witten effect of hidden monopoles

Dine, Anisimov hep-ph/0405256 Higaki, Jeong, FT, 1403.4186, Barr and J.E.Kim, 1407.4311 FT and Yamada 1507.06387

Kawasaki, FT, Yamada, 1511.05030 Nomura, Rajendran, Sanches, 1511.06347

а

N.B. The explicit breaking should be sufficiently suppressed in the present Universe.

Summary

•Axion is a plausible candidate for BSM.

- The QCD axion or axion-like particle may constitute dark matter.
- The ALP can even unify the inflaton and DM:

$$m_{\phi} = \mathcal{O}(0.01 - 0.1) \,\mathrm{eV} \quad g_{\phi\gamma\gamma} = \mathcal{O}(10^{-11}) \,\mathrm{GeV}^{-1}$$

within the reach of IAXO, TASTE, and laser exp.

- The axion DM, if found, will have implications for the early Universe: e.g. high-scale inflation.
- There are many on-going and planned axion search experiments.