Anomaly constraints on QCD phase transition

[Hiroyuki Shimizu & Kazuya Yonekura 1706.06104]

Introduction :

Four dimensional gauge theories such as massless QCD have thermal phase transitions associated to

Deconfinement

Chiral phase transition

Remark: the definition of deconfinement is subtle in QCD. See below.

up to more exotic possibilities (see our paper and [Gaiotto-Kapstin-Komargodski-Seiberg,2017]).

A little more detail on critical temperatures:

 T_{chiral} : defined as the breaking/restoration of the discrete axial symmetry $Z_M^{\text{axial}} \subset U(1)_{\text{axial}}$ Z_M^{axial} is the axial symmetry which is not broken by instantons.

 $T_{\rm deconfine}$: defined as the breaking/restoration of the (subgroup of) center symmetry

 $W = \operatorname{tr} P \exp(i \oint_{S^1} A_\mu dx^\mu)$: Polyakov loop (holonomy around the circle) $Z_{N_c}^{\operatorname{center}}: W \to e^{2\pi i/N_c} W$

For gauge theories with adjoint fermions (such as Super-Yang-Mills), Z^{center}_{N_c} exists.
For QCD-like theories with fundamental fermions with imaginary baryon chemical potential μ_B = π , a subgroup Z₂ ⊂ Z^{center}_{N_c} ⋊ (parity on S¹) exists.

3. For more generic imaginary chemical potential including zero, see our paper.

Very brief sketch of derivation:

 $SU(N_c)$ gauge theory with (1)adjoint fermions or (2)fundamental fermions with $gcd(N_c, N_f) \neq 1$

New mixed 't Hooft anomaly of center and axial symmetry:

$SU(N_c)$ bundle \rightarrow (1) $[SU(N_c)]/Z_{N_c}$ bundle for adjoint (2) $[SU(N_c) \times SU(N_f)]/Z_{gcd(N_c,N_f)}$ bundle for fundamental

Fractional instanton number is possible under nontrivial bundles: Z_M^{axial} has 't Hooft anomaly which forbids a trivial gapped state by anomaly matching.