B/2 correlators in (0,2) hybrid models

M. Bertolini (Kavli IPMU) & M. Romo (IAS)

K A V L PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

A quest for (0,2) mirror symmetry

Just what is (0,2) mirror symmetry?

• (2,2) mirror symmetry: Let *M* be a CY manifold.

 $(M, T_M) \longleftrightarrow (\widetilde{M}, T_{\widetilde{M}})$ A model (Kähler moduli) \leftrightarrow B model, cx.str. moduli

• (0,2) mirror symmetry: Let *M* Calabi-Yau + holomorphic stable bundle \mathcal{E} .

where $\mathcal{O} \in \Omega^{0,\bullet}(\Lambda^{\bullet}\mathcal{E})$ is a anti-holomorphic horizontal form (in the sense of the fiber/base geometry of \mathbf{Y}) valued in the sheaf $\Lambda^{\bullet} \mathcal{E}$.

Localization and S² correlators

 S^2 localization of the B/2 twisted theory yields the following:

Result 2. The S^2 correlators are given by the following formula

 $\langle \mathcal{O}_{\alpha}\mathcal{O}_{\beta}\mathcal{O}_{\gamma}\rangle = \int_{\mathbf{V}} \Omega_{\mathbf{V}} \wedge \left(\omega_{\mathcal{E}} \lrcorner \left(\exp\left(-\frac{\mathbf{v}}{4} \|J\|^{2} + \frac{\mathbf{v}}{4} \overline{\partial J}^{A} \partial_{A} \right) \mathcal{O}_{\alpha} \mathcal{O}_{\beta} \mathcal{O}_{\gamma} \right) \right) ,$

 $(M, \mathcal{E}) \xleftarrow{?} (\widetilde{M}, \widetilde{\mathcal{E}})$ A/2 model $\stackrel{?}{\longleftrightarrow}$ B/2 model

- (Some) open questions:
- Do B/2 model correlators receive quantum corrections?
- -If yes, is there a subset of theories where they do not?
- -If yes, is there a split in the moduli space, which is exchanged by a mirror map? What about the bundle moduli?

(0,2) hybrid conformal field theories

Let **Y** be a Kähler manifold such that

 $\mathbf{Y} = \operatorname{tot}\left(X \xrightarrow{\pi} B\right)$.

A hybrid model can be thought as a fibration of a (0,2) Landau-Ginzburg (LG) model varying adiabatically over a compact and smooth manifold *B*. Let $\mathcal{E} \to \mathbf{Y}$ be a holomorphic vector bundle which couples to the left-moving fermions of the theory. **Definition 1.** The quadruple $(\mathbf{Y}, \mathcal{E}, V, J)$ defines a nonsingular good hybrid model when it admits 1. Chiral symmetries.

where, $\Omega_{\mathbf{Y}}$ is the holomorphic top form on \mathbf{Y} , ∂_A is a basis for \mathcal{E} , $\omega_{\mathcal{E}}$ is a section of $\bigwedge^R \mathcal{E}^{\lor}$, $R = \operatorname{rank} \mathcal{E}$, and **v** is the volume of the worldsheet $\Sigma = \mathbb{P}^1$. The operator $\omega_{\mathcal{E}} \sqcup$ acts by contraction with the section $\omega_{\mathcal{E}}$.

The formula above possesses some formal properties, which are expected for a B/2 correlator.

Result 3. Let $\alpha = \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3$, it is possible to show the following 1. Independence from the choice of the representative of cohomology classes

 $\langle \overline{\boldsymbol{Q}} \alpha \rangle = 0$.

2. Independence from the worldsheet volume \mathbf{v}

 $\langle \alpha \rangle \Big|_{\mathbf{v} + \delta \mathbf{v}} = \langle \alpha \rangle \Big|_{\mathbf{v}}.$

3. Independence from Kähler class of the Kähler metric g *of* Y

 $\langle \alpha \rangle \big|_{g+\delta g} = \langle \alpha \rangle \big|_g \,.$

2. *Potential condition*: the (0,2) superpotential $J \in \Gamma(\mathcal{E}^*)$ is such that $J^{-1}(0) = B$.

This UV theory will RG flow to a family of IR SCFTs parametrized by

1. Kähler class of the Kähler metric of *Y*;

2. Complex structure of Y;

3. Complex structure of \mathcal{E} as a holomorphic bundle; 4. Superpotential *J*.

B/2 heterotic topological ring

(0,2) SCFTs possess a (infinite) chiral ring defined by the cohomology of the supercharge \overline{Q} , $\mathcal{H}_{\overline{Q}}$. Two projections are possible within \overline{Q} -cohomology

• $\mathcal{H}_{A/2}$ ring;

• $\mathcal{H}_{B/2}$ ring.

4. *Holomorphicity*

 $\langle \alpha \rangle \Big|_{\overline{I} + \delta \overline{I}} = \langle \alpha \rangle \Big|_{\overline{I}}$.

(1)

Transformation law

Conjecture 1. There exist $\mathcal{B} \in \operatorname{Hom}(\mathcal{E}^*, \mathcal{E}^*)$ such that $T = \mathcal{B}J \in$ $\Gamma(\mathcal{E}^*)$ does not depend on the complex structure parameters and $T^{-1}(0) = B$. Then

 $\langle \mathcal{O}_{\alpha}\mathcal{O}_{\beta}\mathcal{O}_{\gamma}\rangle = \sum \left(\frac{\mathbf{v}}{4}\right)^{n} \int_{\mathbf{V}} \Omega_{\mathbf{V}} \wedge \left(\mathcal{M}(\mathcal{B})_{n} \lrcorner \left(e^{-\frac{\mathbf{v}}{4}\|T\|^{2}} \left(\overline{\partial T}^{A} \partial_{A}\right)^{n} \mathcal{O}_{\alpha} \mathcal{O}_{\beta} \mathcal{O}_{\gamma}\right)\right) ,$

where

$$\mathcal{M}(\mathcal{B})_n := \omega_{\mathcal{E}} \, \underline{\mathcal{B}^t \wedge \cdots \wedge \mathcal{B}^t}_{n-times} \, .$$

This form allows to compute the dependence of the correlators from the parameters of *J* explicitly.

Unitarity bounds imply that the B/2 genus zero correlators

 $c_{\alpha\beta\gamma} = \langle \mathcal{O}_{\alpha}\mathcal{O}_{\beta}\mathcal{O}_{\gamma}\rangle ,$

are topological in the sense that they are independent from the worldsheet metric and from the insertion points of the operators.

Result 1. In (0,2) hybrid models, the $\mathcal{H}_{\overline{O}}$ chiral ring consists of elements

 $[\mathcal{O}] \in H^{\bullet}_{\overline{\mathcal{O}}}(\boldsymbol{Y}, \Lambda^{\bullet}\mathcal{E}) ,$

Conclusions

• We find perfect agreement with other GLSM phases.

- We obtain a non-trivial prediction for correlators involving twisted fields (from the LG point of view).
- Instanton corrections vanish in all the examples we have checked, suggesting that at least in a large class of theories B/2 correlators are classical. Can we find examples where this does not hold?