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Introduction
• Conformal field theories are characterized by the scaling dimensions

and the three-point functions of their operators. Generically, it is hard
to compute them analytically since the theories are strongly coupled.

• Nonetheless, we can write down a conformally invariant effective
field theory [Hellerman et al. (2015)] which is weakly coupled in the
limit where the charge density is larger than the infrared scale.

Conformally invariant effective field theory at large charge

• In radial quantization when the total charge is large, the lowest state
with a given charge is always automatically in the regime where the
charge density is large compared to the infrared scale.

• We then choose the Wilsonian cutoff Λ to be much larger than the
infrared energy scale but much smaller than the inverse mean
distance between charges ρ−1/2.

• In this limit both higher derivative operators in the effective action,
and quantum loop corrections to observables, are both suppressed
by powers of the density in the denominator.

• Thus, operator dimensions and other properties of low-lying states of
large charge J, are calculable perturbatively in J−1.

Large charge with a vacuum manifold

• Superconformal field theories with an infinite chiral ring have flat
directions and their J-scaling is entirely different from theories that
do not have flat directions.

• For 3dN = 2 theories with a non-nilpotent chiral ring there is at
least one state satisfying the BPS condition ∆J = JR for arbitrarily
U(1)R-charge JR.

• The dimension ∆J of the BPS operators receives no quantum
corrections, so the scaling of the lowest state is kind of boring.

• However we can still ask about things like the dimensions of
near-BPS states such as the second- and third-lowest operators of a
given large U(1)R-charge JR.

The superconformal XYZ model

• We compute the dimensions of near-BPS states with large JR in the
3dN = 2 superconformal fixed point obtained by starting with three
free chiral superfields X , Y , and Z , and giving them a superpotential
W = XYZ . [Hellerman et al. (2017)].

• This model has a vacuum manifold consisting of three branches
connected at the origin, where each one has a vacuum expectation
value for one of the three chiral superfields.

• There is an obvious S3 symmetry permuting the branches. So,
without losing any generality we will study the X -branch, whose
coordinate ring consists of all the operators of the form X J.

Superconformal effective field theory

• Integrating out the heavy states, we get a simple description in terms
of an effective action on the X -branch of moduli space.

• The X -branch is described at leading order in derivatives by the
unique conformally invariant Kähler potential K = cK

∣∣X̄X
∣∣3/4, where

cK is a coefficient that we do not know how to calculate without
knowing the full form of the Wilsonian action at the fixed point.

• K is trivial with respect to a new variable Φ := c
1/2

K X 3/4 and its
conjugate. That is, at leading order this effective description predicts
that the physics of the X -branch is described by a free field theory.

• There are no possible conformal corrections to the form of the Kähler
potential. So, any corrections to the free spectrum must come from
higher-derivative D-terms, which has to be super-Weyl-invariant.

• The leading higher-derivative D-term for a chiral superfield with a
nonzero scaling dimension is the Fradkin-Tseytlin-Paneitz-Riegert
(FTPR) four-derivative term. On S2 × R with radius r , it is of the form
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Energy shift in large-J perturbation theory

• There is an super-algebraic explanation for the fact that the lowest
and the second-lowest states with charge J do not receive quantum
corrections. So let us look for the correction to the third-lowest state
with large U(1)R charge J.

• we evaluate the matrix element of the FTPR term in the state

|2; J + 2〉 := (2(J + 2)!)−
1/2
(

a†
φ̄

)2 (
a†φ
)J+2
|0〉 ,

which we approximate by 2−1/2
(

a†
φ̄

)2
|[J + 2]〉 where |[J + 2]〉 is a

coherent state whose average occupation number is J + 2, and
evaluate the latter matrix element by perturbation theory in a
nontrivial vacuum expectation value of order J.

• By an explicit calculation, one can show that the third-lowest scalar
primary operator with large charge J has its dimension

∆ = J + 2−
192π2κ

J3
+ O(J−4).

Sign constraint

• The coefficient κ is a "non-universal" coefficient in the effective
action, that we do not know how to compute.

• However we can bound the FTPR coefficient below at zero by a
non-bootstrap arguement due to [Adams et al. (2006)].

• If we examine the purely bosonic component of the FTPR term in flat
space, we find that it is equal to Lflat, bosonic

FTPR = 4κ|∂φ|4/|φ|6.
• [Adams et al. (2006)] have pointed out that κ must always be

positive in a consistent effective field theory. A negative κ would lead
to violations of unitarity in low-energy moduli scattering, as well as
superluminal propagation in backgrounds where a scalar gradient
gets an expectation value.

• So the energy shift of the dimension of the third-lowest scalar
primary operator is negative definite by some consistency condition
that is entirely obscure from the point of view of the underlying CFT.

Three-point functions

• Physics at large charge for superconformal field theories with moduli
space is governed by a free field theory with corrections suppressed
by charge density.

• The chiral-chiral-antichiral three-point function〈
φJ−j(∞)φj(1)φ̄J(0)

〉
depends on flat space only on the two-point

function
〈
φJ(1)φ̄J(0)

〉
, which, in the case of theories with eight or

more supercharges in four dimensions, is exactly calculable by
supersymmetric localization [Gerchkovitz et al. (2017)].

• In free field theory, we have
〈
φJ(1)φ̄J(0)

〉
= (J + 1)!.

• However, for 4dN = 4 super-Yang-Mills with gauge group SU(2),
exact localization computation gives (J + 1)!, which is bigger than
the free theory value by a factor of J.

• This mismatch is compensated by a contribution from the
Wess-Zumino action SWZ for the conformal anomaly [Komargodski
and Schwimmer (2011)]. At large charge, φ has a vacuum
expectation value (vev) of order J, so the conformal dilaton
τ := logφ + const. has the vev 〈τ 〉 = log J + O(1). Among others
SWZ has a term SWZ ⊃ (aUV − aIR)

∫
(Euler4)τ , which, in the case of

4dN = 4 SU(2) SYM, SWZ = − log J + O(1). The Euclidean path
integral gets a multiplicative contribution of exp(−SWZ) = J, which
gives the factor we need to make up the difference above.

• We believe this kind of calculation works for any 4d superconformal
field theories with one-dimensional Coulomb branch.
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