Operator bases: understanding the maze of effective field theory

Brian Henning, Xiaochuan Lu, Tom Melia*, and Hitoshi Murayama
Commun. Math. Phys. 347 (2016) no. 2, 363-388; JHEP 1708 (2017) 016; arXiv:1706.08520

Experiments at a given energy scale explore a little portion of the 'maze' of our universe

The little girl in the picture is 'playing with pions' at energies of a few GeV

Her father is exploring the quarks, gluons, etc. of the Standard Model at LHC energies of a few TeV

Each sees their own part of the maze, near to where they are standing, and can describe it using an effective field theory with a local Lagrangian

$$
\mathcal{L}=\sum_{i} c_{i} \mathcal{O}_{i}
$$

What can we understand about the structure of this maze in general?

S-matrix kinematics

We can define an operator basis as the set of all operators in equation 柬that give rise to independent physical effects

$$
\mathcal{K}=\left\{\mathcal{O}_{i}\right\}
$$

Equivalences between operators

S-matrix elements
On-shell \sim Equation of motion

Momentum
conservation

A major result of our work is to treat these equivalences systematically

Example: EFT of a real scalar field using conformal representation theory

Consider the following

$$
\begin{aligned}
& \text { conformal irrepr. as a 'building } \\
& \text { block' of the Lagrangian: } \\
& \qquad \begin{array}{c}
\text { Scaling } \\
R_{[(d-2) / 2,0]} \\
\Delta
\end{array}
\end{aligned}=\left(\begin{array}{c}
\phi \\
\partial_{\mu} \phi \\
\partial_{\left\{\mu_{1}\right.} \partial_{\left.\mu_{2}\right\}} \phi \\
\vdots
\end{array}\right)\binom{\text { Spin }}{\hline}
$$

Build all possible via the traceless condition $(=\{\ldots\})$
operators with n phi fields:
Tensor decomposition back

$$
\operatorname{Sym}^{n} R_{[(d-2) / 2,0]}=\sum_{\Delta, l} c_{\Delta, l} R_{[\Delta, l]}
$$

Lowering operator on irrep is a derivative, meaning descendent (non-highest weight) operators are total derivatives:

Integration by parts

is treated by keeping only primary (highest weight) operators

Counting operators in the Standard Model EFT Hilbert series $\quad H=\operatorname{Tr}_{\mathcal{K}} \omega=\sum_{\mathcal{O} \in \mathcal{K}} \omega(\mathcal{O})$
A 'partition function for the S-matrix'-sum with some weighting function ω over all independent operators in the basis

For example, in the SM EFT, weighting by particle content, and conclusively solving a long-running problem of determining higher dimension operators in this theory

Can we develop an understanding of the allorder structure of the operator basis 'maze'?

Non-linearly realized symmetry group

In the maze above, the little girl and her father describe QCD using different degrees of freedom: he uses quarks and gluons, whereas she uses pions and the QCD chiral Lagrangian built from the matrix (and its derivatives)

$$
\xi(x)=e^{i \pi^{i}(x) X^{i} / f_{\pi}} \text { pions }
$$

We can also treat non-linearly realized symmetry groups, working with the Maurer-Cartan forms

$$
w_{\mu} \equiv \xi^{-1} \partial_{\mu} \xi=u_{\mu}^{i} X^{i}+v_{\mu=\text { Broken }}^{a} T^{a}=u_{\mu}+v_{\mu}
$$

Building block:

$$
R_{u}=\left(\begin{array}{c}u_{\mu} \\ D_{\left\{\mu_{1}\right.} u_{\left.\mu_{2}\right\}} \\ D_{\left\{\mu_{1}\right.} D_{\mu_{2}} u_{\left.\mu_{3}\right\}} \\ D_{\mu}=\partial_{\mu}+v_{\mu}\end{array}\right), ~
$$

EOM is built in again

 But, not a conformal irrep. However, can still treat IBP systematically, and similarly (appeal to Hodge theory)Can we understand how to relate the girl's and her father's operator bases?

