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Experiments at a given energy scale explore a 
little portion of the ‘maze’ of our universe

The little girl in the picture is ‘playing with pions’ at 
energies of a few GeV

Her father is exploring the quarks, gluons, etc. of 
the Standard Model at LHC energies of a few TeV

Each sees their own part of the maze, near to 
where they are standing, and can describe it using 
an effective field theory with a local Lagrangian

L =
X

i

ciOi

What can we understand about the structure of this maze in general?
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Counting operators in the Standard Model EFT
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Non-linearly realized symmetry group

We can define an operator basis as the set of all operators in equation     that 
give rise to independent physical effects 

Example: EFT of a real scalar field using conformal representation theory

S-matrix kinematics

In the maze above, the little girl and her father describe QCD using different 
degrees of freedom: he uses quarks and gluons, whereas she uses pions 
and the QCD chiral Lagrangian built from the matrix (and its derivatives)

Can we understand how to relate the girl’s and 
her father’s operator bases?

Can we develop an understanding of the all- 
order structure of the operator basis ‘maze’? 

We can also treat non-linearly realized symmetry groups, working with the 
Maurer-Cartan forms

*poster presenter

A major result of our work is to treat these equivalences systematically

 S-matrix 
elements

On-shell Equation of motion

Momentum 
conservation Integration by parts
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Hilbert series

A ‘partition function for the S-matrix’—sum with some weighting function 
over all independent operators in the basis

For example, in the SM 
EFT, weighting by particle 
content, and conclusively 
solving a long-running 
problem of determining 
higher dimension 
operators in this theory

!
Equivalences 

between operators

Equation of motion is ‘built in’
via the traceless condition ( = { . . . } )

Integration by parts
is treated by keeping only primary 
(highest weight) operators

Consider the following 
conformal irrepr. as a ‘building 
block’ of the Lagrangian:

Scaling 
dimension Spin

Build all possible 
operators with n phi fields:

Tensor decomposition back 
into conformal irreps.
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out that there is a redundancy in the list of operators presented in [82]. We will report the
details elsewhere.

7.1 Linearly transforming building blocks

Consider a spontaneous symmetry breaking G ! H ⇢ G, with Xi 2 g/h denoting the
broken generators. We are interested in the EFT of the Goldstone bosons ⇡i

(x). In a non-
linear realization, the building block of the EFT Lagrangian is the unitary representation
matrix [37, 48]

⇠(x) = ei⇡
i(x)Xi/f⇡ , (7.1)

and its derivatives; namely, the Lagrangian is a G-invariant polynomial of ⇠, ⇠�1, and their
derivatives.

As a non-linear realization, under a transformation g 2 G, ⇠ is stipulated to transform
as

g⇠ = ⇠0h(g, ⇠), i.e. ⇠ ! ⇠0 = g⇠h�1
(g, ⇠), (7.2)

where we require h(g, ⇠) 2 H. In this section, we only consider global transformations g.
However, observe that h(g, ⇠) is local, as it depends on ⇠(x). To better see what polynomials
are invariant under the transformation eq. (7.2), it is helpful to define the Maurer-Cartan
form

wµ ⌘ ⇠�1@µ⇠ = ui
µXi

+ vaµT a
= uµ + vµ, (7.3)

with T a 2 h denoting the unbroken generators.40 Note in particular that wµ is valued in
the Lie algebra g, with vµ 2 h belonging to the unbroken algebra and uµ 2 g/h in the coset
space. Following eq. (7.2), it is easy to see that the Maurer-Cartan form transforms as

wµ ! hwµh�1
+ h(@µh�1

). (7.4)

Since h(@µh�1
) 2 h, the components of wµ must transform as

uµ ! huµh�1, (7.5a)
vµ ! hvµh�1

+ h(@µh�1
). (7.5b)

We see that uµ transforms homogeneously while the transformation of vµ is inhomogeneous,
similar to a gauge field. If we put vµ together with the derivative @µ, namely if we define

Dµ ⌘ @µ + vµ,

then the transformation of Dµ is homogeneous:

Dµ ! hDµh�1.

40The typical convention includes a factor of i in the definition, wµ = �iuµ � ivµ, so that uµ and vµ are
Hermitian. Formulas that follow are easily modified to adhere to the standard convention.
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The character generating function Z(u, q, x, y) for J
The above considerations lead us to the following single particle module

Ru =

0

BBBB@
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...
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CCCCA
. (7.14)

The corresponding weighted character can be constructed as follows. First consider the
block Dkuµ ⌘ D{µ1

· · · Dµk}uµ. As [uµ] = 1, this block possesses mass dimension k + 1. If
we introduce the weight variable q to keep track of the mass dimension, the appropriately
q-weighted SO(d) character of this block should be

�u,k(q, x, y) = qk+1�(k+1,0,··· ,0)(x)�H,u(y), (7.15)

where following the notation in sec. 4, we have used �H,u(y) to denote the character of uµ

under the internal symmetry group H. Then, the q-weighted SO(d) character for the full
generating tower Ru can be obtained by summing over k:

�u(q, x, y) =

1X

k=0

�u,k(q, x, y) =

⇥
(1 � q2)P (q; x) � 1

⇤
�H,u(y), (7.16)

where we have used eq. (3.17). Therefore, the generating function for the operator space
J =

L1
n=0 symn

(Ru) is

Z(u, q, x, y) =

1X

n=0

un�symn(Ru)(q, x, y) = PE [u�u(q, x, y)] , (7.17)

where we have assigned a weight u to the field uµ.

IBP addressed by Hodge theory

The operator basis K consists of operators in J that are (1) Lorentz scalars, (2) invari-
ant under the unbroken group H, and (3) independent under integration by parts. With
the SO(d) character generating function Z(u, q, x, y) at hand, the first two conditions are
straightforward to impose (by integrating over SO(d) and H). Now we explain how to
address IBP redundancy by counting differential form operators in J . This method has its
footing in Hodge theory.

IBP redundancy imposes an equivalence relation among the scalar operators in J ,

Oa
0 ⇠ Ob

0 if Oa
0 = Ob

0 + @ · Oc
1, (7.18)

where, anticipating our language, the subscript denotes that scalars are 0-forms, taken
equivalent up to the divergence of a 1-form. The wording of this equivalence relation
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Building block:

But, not a conformal irrep.
However, can still treat IBP 
systematically, and similarly 
(appeal to Hodge theory)

Lowering operator on irrep. 
is a derivative, meaning 
descendent (non-highest 
weight) operators are total 
derivatives:

X = Broken,  T = Unbroken generators

EOM is built in again

Dµ = @µ + vµ
Defining


