Flavoured B - L symmetry: from B decays to dark matter

<u>Peter Cox¹</u>, Rodrigo Alonso², Chengcheng Han¹, Tsutomu T. Yanagida¹

¹Kavli IPMU (WPI), UTIAS, University of Tokyo, Kashiwa, Chiba 277-8583, Japan ²CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland

-1

(arXiv:1705.03858)

Motivation

A well-motivated extension of the Standard Model is the addition of 3 right-handed neutrinos, which allows for the generation of small neutrino masses via the seesaw mechanism, and the observed baryon asymmetry through leptogenesis.

This model possesses an exact B - L global symmetry in the limit of vanishing Majorana masses. It is natural to promote such a global symmetry to a local one; however the large RH neutrino masses needed for leptogenesis then lead to a very high breaking scale for the B - L symmetry.

However, two superheavy RH neutrinos are sufficient for both seesaw and leptogenesis. It is therefore interesting to consider the possibility that a *flavoured* B - L gauge symmetry could survive at low energies ($\sim \text{TeV}$). The third RH neutrino is then light

Anomalies in $b \rightarrow s \mu \mu$

Recently, there have been several intriguing hints of lepton flavour universality (LFU) violation in B decays. Measurements by LHCb [1, 2] of the theoretically clean ratios

$$\mathcal{R}_{K}^{(*)} = \frac{\Gamma\left(B \to K^{(*)}\mu^{+}\mu^{-}\right)}{\Gamma\left(B \to K^{(*)}e^{+}e^{-}\right)}$$

show a deficit with respect to the SM prediction, leading to a combined tension with the SM of around 4σ .

It is well-known that this tension can be alleviated via a new physics contribution to the effective operators:

and can provide a dark matter candidate.

$\overline{U(1)}_{(B-L)_3}$ Model

We introduce a *flavoured* B - L gauge symmetry under which only the 3rd generation fermions are charged. The SM quarks and leptons take the following $U(1)_{(B-L)_2}$ charges in flavour space:

$$T^{q} = \frac{1}{3} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad T^{l} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

The U(1) symmetry is *vectorial*, with the same charges for LH and RH fields, and is anomaly free. The SM Higgs is taken to be neutral under $U(1)_{(B-L)_2}$.

RH Neutrino Dark Matter

- ▶ The third RH neutrino obtains a Majorana mass upon spontaneous breaking of $U(1)_{(B-L)_3}$ by a scalar, $\phi(+2)$.
- Imposing an additional \mathbb{Z}_2 symmetry renders ν_B^3 stable, and a viable dark matter candidate.
- \triangleright \mathbb{Z}_2 symmetry is further motivated by structure of the neutrino mass matrix.

$$\mathcal{O}_{9}^{l} = \frac{\alpha}{4\pi} \left(\bar{s}\gamma_{\mu} b_{L} \right) \left(\bar{l}\gamma_{\mu} l \right) \qquad \stackrel{\times}{\simeq} 1.0$$

$$\mathcal{O}_{10}^{l} = \frac{\alpha}{4\pi} \left(\bar{s}\gamma_{\mu} b_{L} \right) \left(\bar{l}\gamma_{\mu}\gamma^{5} l \right) \qquad 0.8$$

$$0.6$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.0$$

Flavour Phenomenology

- \triangleright Z' interactions are generally not flavour diagonal after rotation to the mass basis. ► Can be additional mixing angles involving the 3rd generation, beyond those present in V_{CKM} and U_{PMNS} .
- ▶ To explain the LFU anomalies, two new angles (θ_l, θ_q) are sufficient:

 $U_{e_L} = R^{23}(\theta_l), \quad U_{\nu_L} = R^{23}(\theta_l)U_{PMNS}, \quad U_{d_L} = R^{23}(\theta_q), \quad U_{u_L} = R^{23}(\theta_q)V_{CKM}^{\dagger}$

▶ Produced via thermal freeze-out; annihilation through $U(1)_{(B-L)_3}$ gauge interactions:

Figure: All regions satisfy correct relic density. Coloured regions are excluded by experiment, and dark (light) grey regions by perturbative unitarity (perturbativity up to M_{Pl}).

Figure: Best-fit region to the LFU anomalies (solid/dashed lines). Shaded regions are excluded by existing measurements at 95% CL.

► LFU anomalies

Integrating out Z' gives a contribution to the Wilson coefficients:

$$\delta C_{9}^{\mu} = -\delta C_{10}^{\mu} = -\frac{\pi}{\alpha\sqrt{2}G_{F}V_{tb}V_{ts}^{*}} \frac{g^{2}s_{\theta_{q}}c_{\theta_{q}}s_{\theta_{q}}^{2}}{3m_{Z'}^{2}}$$

The best-fit region to the $b \to s\mu\mu$ anomalies is $\delta C_9^{\mu} \in [-0.81 - 0.48]$ [3]. Can be explained with Z' masses $\mathcal{O}(\text{TeV})$ and $s_{\theta_l} \approx 1$.

Meson mixing

Strongest constraints on this model are from the mass difference in $B_s - B_s$ mixing.

► *B* decays

Direct detection

Generally suppressed due to Majorana dark matter and no Z' coupling to light quarks. However, can have a significant cross-section via ϕ -Higgs mixing.

Indirect detection

Annihilation cross-section is velocity-suppressed over much of the parameter space. $\nu_B^3 \nu_B^3 \rightarrow \phi Z'$ is s-wave and can be probed with future gamma-ray experiments.

► LHC searches

Small production cross-section, $bb \to Z'$. Strongest bound is from $Z' \to \tau \tau$.

Electroweak precision

Kinetic mixing between Z' and Z is strongly constrained. Non-zero mixing is generated by RGE evolution, even if vanishing at high scales.

Perturbativity

Perturbative unitarity excludes large dark matter and Z' masses. Bounds become significantly stronger if requiring perturbativity of couplings up to M_{Pl} .

 $B_s \to \mu \mu$: affected by δC_{10}^{μ} ; measured value consistent with both SM and best-fit region for the anomalies.

 $B \to K^{(*)} \nu \bar{\nu}$: contribution guaranteed by $SU(2)_L$ gauge invariance, but existing bounds are sub-dominant.

Lepton flavour violation

Strongest bounds are from $\tau \to 3\mu$. Constrains mixing angle in the lepton sector θ_l , and disfavours maximal mixing.

• LHC Z' searches

Important bounds from $Z' \to \mu \mu$ searches, but generally weaker than in other models. A light Z' below LHC searches also remains a possibility.

References

- R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482 [hep-ex]].
- R. Aaij et al. [LHCb Collaboration], arXiv:1705.05802 [hep-ex].
- W. Altmannshofer, P. Stangl and D. M. Straub, arXiv:1704.05435 [hep-ph].