Contractibility in algebraic geometry

Will Donovan
Kavli IPMU

Complex algebraic variety
The space of solutions to polynomial equations in complex numbers.

Contractions

A fundamental way to relate varieties.
Used in constructions, and classification.

Definition

For subvariety $Y \subset X$, say algebraic map

$$
f: X \rightarrow Z
$$

is a contraction of Y if

- $\left.f\right|_{Y}$ has image a point,
- $\left.f\right|_{X-Y}$ is an isomorphism.

Simple example

Let $Z_{1}=\mathbb{C}^{2}$ with coordinates (a, b). Take

$$
X_{1} \subset \mathbb{C}^{2} \times \mathbb{C P}^{1}
$$

defined by equation

$$
a B=A b
$$

where $(A: B)$ are coordinates on $\mathbb{C P}^{1}$.
Natural map $X_{1} \rightarrow Z_{1}$ is contraction of $\mathbb{C P}^{1} \subset X_{1}$ defined by $a=b=0$:

Singular example

Often image Z of contraction is singular. For example,

$$
Z_{2} \subset \mathbb{C}^{3}
$$

defined by equation

$$
r s=t^{2}
$$

has a resolution $X_{2} \rightarrow Z_{2}$, which is a contraction of $\mathbb{C P}^{1} \subset X_{2}$.

Question

For $C \subset X$ where $C=\mathbb{C P}^{1}$, when is C contractible?

Answer in dimension 2

Assume $\operatorname{dim} X=2$.
Let $d=$ self-intersection number of C.

$$
C \text { contractible } \Longleftrightarrow d<0
$$

For X_{1} and X_{2}, have $d=-1,-2$ resp.

Higher dimensions

By Jiménez [5], for X of any dimension,

$$
C \text { contractible } \Longleftrightarrow
$$

exists line bundle on neighbourhood of C with certain properties.

Challenge

Find a simple criterion for contractibility.

Issue in dimension 3

Necessary to study degenerate curves:

Resolutions of $r s=t^{2}+\left(u^{2}+D^{2}\right)^{2}$
Red curve above has infinitesimal first-order deformation; Reid [7] used such deformations to study contractibility in dimension 3.

Contraction algebra

Noncommutative deformations of C controlled by contraction algebra A from $[2,3]$. Computable in examples. In dimension 3 example above, $A=\mathbb{C}[\epsilon] / \epsilon^{2}$.

Theorem: Donovan-Wemyss [3]

C contractible $\Longleftrightarrow A$ finite-dimensional.

Classical deformations

Classical deformations of C controlled by abelianization $A^{\text {ab }}$. We show that C contractible $\nLeftarrow A^{\text {ab }}$ finite-dimensional.

Noncontractible example

Let $X_{3}=X_{2} \times \mathbb{C}$. Then for $C=\mathbb{C P}^{1} \times 0 \subset X_{3}$, find $A=\mathbb{C}[[T]]$, so C not contractible.

Related work

Generalizations of A used to study enumerative geometry and derived category of X, by Donovan-Wemyss [4], and Bodzenta-Bondal [1], Kawamata [6], Toda [8], and others.
[1] Bodzenta, Bondal. arXiv:1511.00665.
[5] Jiménez. Duke Math J 1992.
[2] Donovan, Wemyss. Duke Math J 2016.
[6] Kawamata. arXiv:1512.06170.
[3] Donovan, Wemyss. arXiv:1511.00406.
[4] Donovan, Wemyss. To appear JEMS.
[7] Reid. Proceedings, Tokyo 1981.
[8] Toda. Compositio Math 2017.

