Contractibility in algebraic geometry Will Donovan Kavli IPMU

Used in constructions, and classification.

Definition

For subvariety $Y \subset X$, say algebraic map $f\colon X\to Z$ is a contraction of Y if

- $f|_Y$ has image a point,
- $f|_{X-Y}$ is an isomorphism.

Simple example

Let $Z_1 = \mathbb{C}^2$ with coordinates (a, b). Take $X_1 \subset \mathbb{C}^2 \times \mathbb{CP}^1$

defined by equation

Let d = self-intersection number of C.

C contractible $\iff d < 0$.

For X_1 and X_2 , have d = -1, -2 resp.

Higher dimensions

By Jiménez [5], for X of any dimension,

C contractible \iff exists line bundle on neighbourhood of C with certain properties.

Resolutions of $rs = t^2 + (u^2 + D^2)^2$

has Red curve above infinitesimal first-order deformation; Reid [7] used such deformations to study contractibility in dimension 3.

Contraction algebra

Noncommutative deformations of C controlled by contraction algebra A from [2, 3]. Computable in examples. In dimension 3 example above, $A = \mathbb{C}[\epsilon]/\epsilon^2$.

aB = Ab

where (A:B) are coordinates on \mathbb{CP}^1 . Natural map $X_1 \to Z_1$ is contraction of $\mathbb{CP}^1 \subset X_1$ defined by a = b = 0:

Theorem: Donovan–Wemyss [3]

C contractible $\iff A$ finite-dimensional.

Classical deformations

Classical deformations of C controlled by abelianization A^{ab} . We show that C contractible $\Leftarrow A^{ab}$ finite-dimensional.

Noncontractible example

Let $X_3 = X_2 \times \mathbb{C}$. Then for $C = \mathbb{CP}^1 \times 0 \subset X_3$, find $A = \mathbb{C}[[T]]$, so C not contractible.

Related work

Singular example

Often image Z of contraction is singular. For example,

 $Z_2 \subset \mathbb{C}^3$

defined by equation

 $rs = t^2$

has a resolution $X_2 \rightarrow Z_2$, which is a contraction of $\mathbb{CP}^1 \subset X_2$.

Generalizations of A used to study enumerative geometry and derived category of X, by Donovan–Wemyss [4], and Bodzenta–Bondal [1], Kawamata [6], Toda [8], and others.

Bodzenta, Bondal. arXiv:1511.00665. Donovan, Wemyss. Duke Math J 2016. 3 Donovan, Wemyss. arXiv:1511.00406. Donovan, Wemyss. To appear JEMS. 4

Jiménez. Duke Math J 1992. |5|[6]Kawamata. arXiv:1512.06170. $\left[7\right]$ Reid. Proceedings, Tokyo 1981. 8 Toda. Compositio Math 2017.

