Complex dynamics on derived categories of K3 surfaces

Genki Ouchi University of Tokyo, Kavli IPMU e-mail: genki.oouchi@ipmu.jp

Complex dynamics on algebraic varieties

X: algebraic variety, $f: X \to X$: endomorphism \rightsquigarrow We can regard a pair (X, f) as a complex dynamical system on X. Study behavior of iteration of f.

e.g. periodic points, topological entropy $h_{
m top}(f)$ of complex dynamical system etc

From the point of view of complex dynamics, we can measure complexity of symmetry of algebraic varieties.

Complex dynamics on derived categories

X: algebraic variety $D^b(\operatorname{Coh} X)$: derived category of coherent sheaves on X $\Phi: D^b(\operatorname{Coh} X) \to D^b(\operatorname{Coh} X)$: endofunctor $\rightsquigarrow (D^b(\operatorname{Coh} X), \Phi)$: categorical dynamical system ("complex dynamical system on $D^b(\operatorname{Coh} X)$ ") e.g. periodic orbit?, categorical entropy $h_{\operatorname{cat}}(\Phi)$ of categorical dynamical system (Dimitrov-Haiden-Kazarkov-Kontsevich 2014) etc

Symmetry of algebraic varieties

The automorphism group $\operatorname{Aut}(X)$ indicates symmetry of X. $\operatorname{Aut}(X) \subset \operatorname{Aut}(D^b(\operatorname{Coh} X))$ $\widehat{\uparrow}$ more symmetry of X

Question

Are there geometric meaning of elements in $\operatorname{Aut}(D^b(\operatorname{Coh}(X)))$?

Complex dynamics on K3 surfaces

McMullen and Oguiso et al constructed examples of K3 surfaces with automorphisms of positive topological entropy.

However,

X: K3 surface of Picard number one

 $\Rightarrow \operatorname{Aut}(X) = 1$ or \mathbb{Z}_2

 $\rightsquigarrow X$ has only automorphisms of null topological entropy.

 $\exists \Phi \in \operatorname{Aut}(D^b(\operatorname{Coh}(X)))$ such that $h_{\operatorname{cat}}(\Phi) > 0$

 \rightsquigarrow The K3 surface $oldsymbol{X}$ has a "wild" symmetry at the level of derived category.

 \rightsquigarrow Study the meaning of such autoequvalences.

Complex dynamics on moduli spaces

Theorem

We can give a categorical dynamical system $(D^b(Coh(X)), \Phi)$ on a K3 surface X such that the following properties hold.

• $\exists \sigma$: Bridgeland stability condition on $D^b(\operatorname{Coh}(X))$, $\exists v \in H^*(X,\mathbb{Z})$ s.t. Φ induces an automorphism $\Phi_{\sigma,v}: M_\sigma(v) \to M_\sigma(v)$.

 $M_{\sigma}(v)$: moduli space of σ -stable objects with Mukai vector v.

 $\operatorname{Im} M_\sigma(v) \cdot h_{\operatorname{cat}}(\Phi) \geq 2h_{\operatorname{top}}(\Phi_{\sigma,v}) > 0$

The moduli space $M_{\sigma}(v)$ is an example of a projective hyperKähler manifold. This theorem gives new

examples of projective hyperKähler manifolds with automorphisms of positive topological entropy. Moreover, symmetry of derived categories sometimes induces symmetry of moduli spaces.