PBHs from Inflation and their Implications

Kyohei Mukaida

Kavli IPMU, Univ. of Tokyo \rightarrow DESY, Hamburg (Oct. 2017)

Based on 1611.06130, 1701.02544, 1711.xxxxx In collaboration with K.Inomata, M.Kawasaki, Y.Tada, T.T.Yanagida

Introduction

Introduction

Why Primordial Black Holes (PBHs)?

- Non-particle candidate of DM
- Candidate of gravitational wave events observed by LIGO.
- Constrain other DM models; WIMP by UCMH, axion by super-radiance,...

How do you produce them?

- Need Large density perturbations for Gravity > Pressure.
 - Collapse of localized configurations: bubble collision, cosmic string, Q-ball,...
 - Collapse of **primordial** density perturbations: **inflation**, curvaton,...

Introduction

Why Primordial Black Holes (PBHs)?

- Non-particle candidate of DM
- Candidate of gravitational wave events observed by LIGO.
- Constrain other DM models; WIMP by UCMH, axion by super-radiance,...

How do you produce them?

- Need Large density perturbations for Gravity > Pressure.
 - Collapse of localized configurations: bubble collision, cosmic string, Q-ball,...
 - Collapse of **primordial** density perturbations: **inflation**, curvaton,...

Constraints independent of production mechanisms.

▶ Note: a **delta function** for PBH spectrum is assumed.

 Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Hawking radiation EGy: 0912.5297

Gravitational lensing

Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett.111.181302 EROS/MACHO/OGLE: 0011506, 0607207, 1106.2925 Dynamical

WD: 1505.04444

UFD: 1605.03665, 1704.01668

Accretion

CMB: 1612.05644,1707.04206,...

Radio/Xray: 1612.00457, 1705.00791

Talk by Y. Inoue

Constraints independent of production mechanisms.

▶ Note: a **delta function** for PBH spectrum is assumed.

Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077] **Hawking radiation** EGy: 0912.5297 **Gravitational lensing** Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett. 111.181302 EROS/MACHO/OGLE: 0011506,0607207, 1106.2925 **Dynamical** WD: 1505.04444 UFD: 1605.03665, 1704.01668 Accretion CMB: 1612.05644,1707.04206,... Radio/Xray: 1612.00457, 1705.00791

Talk by Y. Inoue

Constraints independent of production mechanisms.

▶ Note: a **delta function** for PBH spectrum is assumed.

 Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Hawking radiation EGy: 0912.5297

Gravitational lensing

Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett.111.181302 EROS/MACHO/OGLE: 0011506,0607207, 1106.2925 Dynamical

WD: 1505.04444 UFD: 1605.03665, 1704.01668

Accretion

CMB: 1612.05644,1707.04206,...

Radio/Xray: 1612.00457, 1705.00791

Talk by Y. Inoue

Constraints independent of production mechanisms.

▶ Note: a **delta function** for PBH spectrum is assumed.

Constraints independent of production mechanisms.

▶ Note: a **delta function** for PBH spectrum is assumed.

Constraints independent of production mechanisms.

Constraints independent of production mechanisms.

- **PBH** as **all DM**: marginal, but still viable.
- PBH for LIGO events: marginal, but still viable.

 Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Hawking radiation EGy: 0912.5297

Gravitational lensing

Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett.111.181302 EROS/MACHO/OGLE: 0011506,0607207, 1106.2925 Dynamical

WD: 1505.04444 UFD: 1605.03665, 1704.01668

Accretion

CMB: 1612.05644,1707.04206,...

Radio/Xray: 1612.00457, 1705.00791

Talk by Y. Inoue

Constraints independent of production mechanisms.

- **PBH** as **all DM**: marginal, but still viable.
- ▶ PBH for LIGO events: marginal, but still viable.

 Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Hawking radiation EGy: 0912.5297

Gravitational lensing

Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett.111.181302 EROS/MACHO/OGLE: 0011506,0607207, 1106.2925 Dynamical

WD: 1505.04444 UFD: 1605.03665, 1704.01668

Accretion

CMB: 1612.05644,1707.04206,...

Radio/Xray: 1612.00457, 1705.00791

Talk by Y. Inoue

Constraints independent of production mechanisms.

- **PBH** as **all DM**: marginal, but still viable.
- > PBH for LIGO events: marginal, but still viable.

Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Hawking radiation EGy: 0912.5297

Gravitational lensing Femto: 1204.2056 HSC: 1701.02151

Assume a specific production mechanism (inflation). Are there any other ways to probe them? Can we construct concrete inflation models?

Outline of Talk

Introduction

Constraints on PBHs from Inflation

Double inflation: PBHs for LIGO or DM

Summary

Outline of Talk

Introduction

Constraints on PBHs from Inflation

Double inflation: PBHs for LIGO or DM

Summary

Constraints on PBHs from Inflation

Formation of PBHs

Need large $\delta \rho / \rho$ for Gravity > Pressure Talk by T. Harada

► PBH mass (M) \Leftrightarrow scale of perturbation (k) $M = \gamma \rho \frac{4\pi H^{-3}}{3} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_{*}}{3.36}\right)^{-\frac{1}{6}} \left(\frac{k/(2\pi)}{3 \times 10^{-9} \,\mathrm{Hz}}\right)^{-2}$ [Carr, '75]

▶ PBH abundance (β) \leftrightarrows amplitude of perturbation (P_{ζ})

$$\beta(M) = \int_{\delta_c} \mathrm{d}\delta \frac{\mathrm{e}^{-\frac{\delta^2}{2\sigma^2(M)}}}{\sqrt{2\pi\sigma^2(M)}} \sim \sigma(M) \,\mathrm{e}^{-\frac{\delta_c^2}{2\sigma^2(M)}} \qquad \sigma^2(M(k)) = \int \mathrm{d}\ln q \, W^2(q \, k^{-1}) \frac{16}{81} (q \, k^{-1})^4 \, \mathscr{P}_{\zeta}(q) \\ \propto \mathscr{P}_{\zeta}(k)$$

• Enhanced **non-Gaussianity** \rightarrow same amount of PBHs w/ smaller/larger P_{ζ}

Formation of PBHs

Typical probability we need

• 1% of DM @ O(10) solarmass: $\beta \sim 10^{-10}$.

 $\beta \ll I \rightarrow PBHs$

➡ independent of how they produced.

PBH mass (M) \Leftrightarrow scale of perturbation (k) $M = \gamma \rho \frac{4\pi H^{-3}}{3} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_*}{3.36}\right)^{-\frac{1}{6}} \left(\frac{k/(2\pi)}{3 \times 10^{-9} \,\mathrm{Hz}}\right)^{-2}$ [Carr, '75]

• PBH abundance $(\beta) \hookrightarrow$ amplitude of perturbation (\mathbf{P}_{ζ})

$$\beta(M) = \int_{\delta_c} \mathrm{d}\delta \frac{\mathrm{e}^{-\frac{\delta^2}{2\sigma^2(M)}}}{\sqrt{2\pi\sigma^2(M)}} \sim \sigma(M) \,\mathrm{e}^{-\frac{\delta_c^2}{2\sigma^2(M)}} \qquad \sigma^2(M(k)) = \int \mathrm{d}\ln q \, W^2(q \, k^{-1}) \frac{16}{81} (q \, k^{-1})^4 \, \mathscr{P}_{\zeta}(q) \\ \propto \mathscr{P}_{\zeta}(k)$$

• Enhanced **non-Gaussianity** \rightarrow same amount of PBHs w/ smaller/larger P_{ζ}

Constraints independent of production mechanisms.

▶ Note: a **delta function** for PBH spectrum is assumed.

 Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Hawking radiation EGy: 0912.5297

Gravitational lensing

Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett.111.181302 EROS/MACHO/OGLE: 0011506, 0607207, 1106.2925 Dynamical

WD: 1505.04444

UFD: 1605.03665, 1704.01668

Accretion

CMB: 1612.05644,1707.04206,...

Radio/Xray: 1612.00457, 1705.00791

Talk by Y. Inoue

Formation of PBHs

Typical probability we need

• 1% of DM @ O(10) solarmass: $\beta \sim 10^{-10}$, $P_{\zeta} \sim O(0.01)$

 $\beta \ll I \rightarrow PBHs$

➡ independent of how they produced.

PBH mass (M) \Leftrightarrow scale of perturbation (k) $M = \gamma \rho \frac{4\pi H^{-3}}{3} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_*}{3.36}\right)^{-\frac{1}{6}} \left(\frac{k/(2\pi)}{3 \times 10^{-9} \,\mathrm{Hz}}\right)^{-2}$ [Carr, '75]

• PBH abundance $(\beta) \cong$ amplitude of perturbation (\mathbf{P}_{ζ})

$$\beta(M) = \int_{\delta_c} \mathrm{d}\delta \frac{\mathrm{e}^{-\frac{\delta^2}{2\sigma^2(M)}}}{\sqrt{2\pi\sigma^2(M)}} \sim \sigma(M) \mathrm{e}^{-\frac{\delta_c^2}{2\sigma^2(M)}}; \quad \sigma^2(M) \sim P_{\zeta}(k)$$

• Enhanced **non-Gaussianity** \rightarrow same amount of PBHs w/ smaller/larger P_{ζ}

Formation of PBHs

Typical probability we need

- 1% of DM @ O(10) solarmass: $\beta \sim 10^{-10}$, $P_{\zeta} \sim O(0.01)$
- $\beta \ll I \rightarrow PBHs$

I -
$$\beta$$
 \rightarrow **plenty of** over-densities

➡ independent of how they produced.
➡ Use them!

PBH mass (M) \Leftrightarrow scale of perturbation (k) $M = \gamma \rho \frac{4\pi H^{-3}}{3} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_*}{3.36}\right)^{-\frac{1}{6}} \left(\frac{k/(2\pi)}{3 \times 10^{-9} \text{ Hz}}\right)^{-2}$ [Carr, '75]

• PBH abundance $(\beta) \cong$ amplitude of perturbation (\mathbf{P}_{ζ})

$$\beta(M) = \int_{\delta_c} \mathrm{d}\delta \frac{\mathrm{e}^{-\frac{\delta^2}{2\sigma^2(M)}}}{\sqrt{2\pi\sigma^2(M)}} \sim \sigma(M) \mathrm{e}^{-\frac{\delta_c^2}{2\sigma^2(M)}}; \quad \sigma^2(M) \sim P_{\zeta}(k)$$

• Enhanced **non-Gaussianity** \rightarrow same amount of PBHs w/ smaller/larger P_{ζ}

Probes of small-scale perturb.

Energy injection from large small-scale perturbs.

How do they affect? → Depends on components and era.

Probes of small-scale perturb.

Energy injection from large small-scale perturbs.

How do they affect? → Depends on components and era.

Constraints on the **Power spectrum** (P_{ζ})

Constraints on the **Power spectrum** (P_{ζ})

Constraints on the **Power spectrum** (P_{ζ})

Energy injection from large small-scale perturbs.

How do they affect? → Depends on components and era.

Energy injection from large small-scale perturbs.

How are they dissipated among background? → Depends on Era.

Formation of PBHs

Energy injection from large small-scale perturbs.

How do they affect? → Depends on components and era.

Large density perturbation as a source of GWs

Tensor perturbation obeys...

[Saito, Yokoyama,'09; Bugaev, Klimai,'10]

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

Depends on the **density perturb.**, $\Psi \sim \zeta$

$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right)$$

Formation of PBH

Production of GW by second order effects $h_{i\,j}\,{\propto}\,\Psi^2\,{\sim}\,\zeta^2$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathscr{P}_{\zeta}(k)}{10^{-2}}\right)^2$$
where $\Omega_{\rm GW,tot} = \int d\log k \,\Omega_{\rm GW}(k)$

Large density perturbation as a source of GWs

Tensor perturbation obeys...

[Saito, Yokoyama,'09; Bugaev, Klimai,'10]

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

Depends on the **density perturb.**, $\Psi \sim \zeta$

$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathcal{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathcal{H}} + \Psi\right)$$

Production of GW by second order effects $h_{i\,i}\,{\propto}\,\Psi^2\,{\sim}\,\zeta^2$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathscr{P}_{\zeta}(k)}{10^{-2}}\right)^2$$
where $\Omega_{\rm GW,tot} = \int d\log k \Omega_{\rm GW}(k)$

Large density perturbation as a source of GWs

Tensor perturbation obeys...

[Saito, Yokoyama,'09; Bugaev, Klimai,'10]

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\hat{\mathcal{T}}_{ij;kl}S_{kl}$$

Depends on the **density perturb.**, $\Psi \sim \zeta$

$$S_{ij} \equiv 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{4}{3(1+w)} \partial_i \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right) \partial_j \left(\frac{\Psi'}{\mathscr{H}} + \Psi\right)$$

Production of GW by second order effects

$$h_{ij} \propto \Psi^2 \sim \zeta^2$$

$$\Omega_{\rm GW}(k)h^2 \sim 10^{-9} \left(\frac{\mathscr{P}_{\zeta}(k)}{10^{-2}}\right)^2$$

where $\Omega_{\rm GW,tot} = \int d\log k \,\Omega_{\rm GW}(k)$

J

Large density perturbation as a source of GWs

Current and future observations of GWs

Large density perturbation as a source of GWs

• GW has a corresponding peak at the same k.

Constraints on the **Power spectrum** (P_{ζ})

Constraints on **PBHs from inflation** (*misleading)

PBH as **all DM**: marginal, but still viable.

PBH for LIGO events: marginal, but still viable!

No enhanced **non-Gaussianity**. Nakama+1612.06264, 1710.06945

 Constraints from Neutron Star capture are evaded for a conservative value of DM inside the globular clusters. [See e.g. Kusenko+, 1310.8642; Carr+, 1607.06077]

Hawking radiation EGy: 0912.5297

Gravitational lensing

Femto: 1204.2056 HSC: 1701.02151 Kepler: PhysRevLett.111.181302 EROS/MACHO/OGLE: 0011506,0607207, 1106.2925 Dynamical

WD: 1505.04444 UFD: 1605.03665, 1704.01668

Accretion

CMB: 1612.05644,1707.04206,...

Radio/Xray: 1612.00457, 1705.00791

Talk by Y. Inoue

Outline of Talk

Introduction

Constraints on PBHs from Inflation

Double inflation: PBHs for LIGO or DM

Summary

Double Inflation: PBHs for LIGO or DM

Constraints on the **Power spectrum** (P_{ζ})

Flatten your potential

Single-field inflation for the total e-folds of N = 50-60

Flatten your potential

Single-field inflation for the total e-folds of N = 50-60

Flatten your potential

- Single-field inflation for the total e-folds of N = 50-60
 - Single-field **slow-roll** inflation for stable PBHs (M > 10^{15} g) is **ruled out!** [Motohashi+1706.06784]

Slow-roll must be violated for PBHs with $M > 10^{15}$ g.

Marginal slow roll violation \rightarrow broad spectrum.

Flatten your potential

- Single-field inflation for the total e-folds of N = 50-60
 - Single-field **slow-roll** inflation for stable PBHs (M > 10^{15} g) is **ruled out!** [Motohashi+1706.06784]

Slow-roll must be violated for PBHs with $M > 10^{15}$ g. Marginal slow roll violation \rightarrow broad spectrum.

- Multiple single-field inflations for the total e-folds of N = 50-60
 - Total e-folds (N=50-60) = 1 st inflation + 2nd inflation +...

Flatten your potential

- Single-field inflation for the total e-folds of N = 50-60
 - Single-field **slow-roll** inflation for stable PBHs (M > 10^{15} g) is **ruled out!** [Motohashi+1706.06784]

Slow-roll must be violated for PBHs with $M > 10^{15}$ g. Marginal slow roll violation \rightarrow broad spectrum.

- Multiple single-field inflations for the total e-folds of N = 50-60
 - Total e-folds (N=50-60) = 1st inflation + 2nd inflation

Flatten your potential

- Single-field inflation for the total e-folds of N = 50-60
 - Single-field **slow-roll** inflation for stable PBHs (M > 10^{15} g) is **ruled out!** [Motohashi+1706.06784]

Slow-roll must be violated for PBHs with $M > 10^{15}$ g. Marginal slow roll violation \rightarrow broad spectrum.

- Multiple single-field inflations for the total e-folds of N = 50-60
 - Total e-folds (N=50-60) = 1st inflation + 2nd inflation

(cf.) Inflation landscape(?): many different vacua, inflations may take place @ each vacuum.

Flatten your potential

- Single-field inflation for the total e-folds of N = 50-60
 - Single-field **slow-roll** inflation for stable PBHs (M > 10^{15} g) is **ruled out!** [Motohashi+1706.06784]

Slow-roll must be violated for PBHs with $M > 10^{15}$ g. Marginal slow roll violation \rightarrow broad spectrum.

- Multiple single-field inflations for the total e-folds of N = 50-60
 - Total e-folds (N=50-60) = 1st inflation + 2nd inflation

 Ist
 Oscillation
 2nd
 Slow-roll is strongly violated!

 inflation
 inflation

(cf.) Inflation landscape(?): many different vacua, inflations may take place @ each vacuum.

Use other fields

Axion-like Inflation, Curvaton,...

Enhanced **non-Gaussianity** can be obtained.

Flatten your potential

- Single-field inflation for the total e-folds of N = 50-60
 - Single-field **slow-roll** inflation for stable PBHs (M > 10^{15} g) is **ruled out!** [Motohashi+1706.06784]

Slow-roll must be violated for PBHs with $M > 10^{15}$ g. Marginal slow roll violation \rightarrow broad spectrum.

- Multiple single-field inflations for the total e-folds of N = 50-60
 - Total e-folds (N=50-60) = 1st inflation + 2nd inflation

 Ist
 Oscillation
 Image: Constraint of the second secon

Use **other fields**

Axion-like Inflation, Curvaton,...

Enhanced **non-Gaussianity** can be obtained.

PBHs for LIGO or DM from **Double Inflation**

PBHs for LIGO or DM from **Double Inflation**

PBHs for LIGO or DM from **Double Inflation**

PBHs for LIGO or DM from **Double Inflation**

PBHs for LIGO or DM from **Double Inflation**

PBHs for LIGO or DM from **Double Inflation**

PBHs for LIGO or DM from **Double Inflation**

PBHs for LIGO or DM from **Double Inflation**

Total e-folds (N=50-60) = Ist-inflation + 2nd inflation

PBHs for LIGO or DM from **Double Inflation**

Total e-folds (N=50-60) = Ist-inflation + 2nd inflation

- SUGRA: discrete R symmetry breaking model.

[Kawasaki+1606.07631, Inomata+1611.06130]

$$W = mX\Psi \qquad K = \frac{1}{2} \left(\Psi + \Psi^{\dagger} \right)^{2} + |X|^{2} + |\Phi|^{2} + \frac{\kappa}{4} |\Phi|^{4} \qquad \frac{\|\Psi\|X\|\Phi\|v^{2}\|v^{$$

Ψ : Ist-inflaton; X: stabilizer; Φ : R-breaking field, 2nd-inflaton

PBHs for LIGO or DM from **Double Inflation**

Total e-folds (N=50-60) = Ist-inflation + 2nd inflation

- PBHs for LIGO \rightarrow **SKA** and future CMB observation.
- PBHs for $DM \rightarrow eLISA$ and LISA.

PBHs for LIGO or DM from **Double Inflation**

Total e-folds (N=50-60) = Ist-inflation + 2nd inflation

- PBHs for LIGO \rightarrow **SKA** and future CMB observation.
- PBHs for $DM \rightarrow eLISA$ and LISA.

Summary

Inflation for PBHs needs LARGE $P_{\zeta}(k) \sim 10^{-2}$.

Many over-densities are generated per one PBH:

- CMB spectral distortion @ 104-1 Mpc-1; BBN @ 105-104 Mpc-1
- Induced GWs: PTA @ ~10⁶ Mpc⁻¹; eLISA @ 10¹¹-10¹³ Mpc⁻¹
- UCMHs...depends on models and DM profile.

PBHs for LIGO \rightarrow need a sharp peak@k~10⁻² Mpc⁻¹

Inomata, Kawasaki, **KM**, Tada, Yanagida; 1611.06130

PBHs for DM \rightarrow could be broad (wave eff. on HSC).

Double inflation (SUGRA) can explain both at once!

Inomata, Kawasaki, **KM**, Yanagida; in prep.

Enhance the **non-Gaussianity** → **multi-field**?

Nakama+1612.06264, 1710.06945