Compact Stars as Primordial Black Hole Laboratories

Volodymyr Takhistov (UCLA)

Focus Week on Primordial Black Holes, Kavli IPMU

(11.15.2017)

PART I:

Forging Heavy Elements from PBHs

Based on: Fuller, Kusenko, Takhistov [arXiv:1704.01129, PRL (2017)]

V. Takhistov IPMU

 As astrophysicists say, we are made of stardust - byproduct of supernova furnaces fusing helium and hydrogen into elements needed for life

 As astrophysicists say, we are made of stardust - byproduct of supernova furnaces fusing helium and hydrogen into elements needed for life

"The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff."

- Carl Sagan, 1973 "The Cosmic Connection"

Image: "Cosmos"

 As astrophysicists say, we are made of stardust - byproduct of supernova furnaces fusing helium and hydrogen into elements needed for life

"The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff."

- Carl Sagan, 1973 "The Cosmic Connection"

... but different furnace is needed for elements heavier than iron: gold, platinum, uranium, etc.

What is the origin?

Image: "Cosmos"

 As astrophysicists say, we are made of stardust - byproduct of supernova furnaces fusing helium and hydrogen into elements needed for life

"The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff."

- Carl Sagan, 1973 "The Cosmic Connection"

... but different furnace is needed for elements heavier than iron: gold, platinum, uranium, etc.

What is the origin?

could be primordial black holes

Image: "Cosmos"

V. Takhistov IPMU

• Dark matter (DM) nature unknown beyond gravitational interactions

- Dark matter (DM) nature unknown beyond gravitational interactions
- Primordial black holes (PBH) could form in early Universe (proposed 50 yrs. ago) [Zel'dovich,Novikov,67; \rightarrow could be DM

Hawking,71; Carr, Hawking, 74]

- Dark matter (DM) nature unknown beyond gravitational interactions

[Bird,Kamionkowski+,16]

• <u>Renewed interest</u>: GW detection (PBH?), novel production mechanisms/signatures,

no hints of popular DM particle candidates (e.g. WIMPs)

Carr, Hawking, 74]

- Dark matter (DM) nature unknown beyond gravitational interactions

[Bird,Kamionkowski+,16]

• <u>Renewed interest</u>: GW detection (PBH?), novel production mechanisms/signatures,

no hints of popular DM particle candidates (e.g. WIMPs)

... actually, GWs from PBH already considered long before observation:

[Carr, 80; Bond,Carr, 84; Nakamura,Sasaki,Tanaka,Thorne, 97; Clesse,Garcia-Bellido, 15]

Carr, Hawking, 74]

- Dark matter (DM) nature unknown beyond gravitational interactions

[Bird,Kamionkowski+,16]

- <u>Renewed interest</u>: GW detection (PBH?), novel production mechanisms/signatures, no hints of popular DM particle candidates (e.g. WIMPs)
- PBH appear in many BSM scenarios and strictly, don't require non-SM physics

 → plausible that regardless of DM origin, some in PBH !

Carr, Hawking, 74]

• <u>PBH formation</u>: density contrast $\frac{\delta \rho}{\rho} \sim \mathcal{O}(1)$ within horizon \rightarrow collapse to BH

... improbable without new physics

see reviews [Carr,Kuhnel,Sandstad,17; Khlopov,10]

• <u>PBH formation</u>: density contrast $\frac{\delta \rho}{\rho} \sim \mathcal{O}(1)$ within horizon \rightarrow collapse to BH ... *improbable without new physics*

see reviews [Carr,Kuhnel,Sandstad,17; Khlopov,10]

Many early Universe production mechanisms

(e.g. scalar fields, baryogenesis, inflation, phase transitions, topological defects)

• <u>PBH formation</u>: density contrast $\frac{\delta \rho}{\rho} \sim \mathcal{O}(1)$ within horizon \rightarrow collapse to BH ... *improbable without new physics*

see reviews [Carr,Kuhnel,Sandstad,17; Khlopov,10]

• Many early Universe production mechanisms

(e.g. scalar fields, baryogenesis, inflation, phase transitions, topological defects)

• Can estimate BH mass from formation time: $M_{\rm BH} \sim t$

• <u>PBH formation</u>: density contrast $\frac{\delta \rho}{\rho} \sim O(1)$ within horizon \rightarrow collapse to BH ... *improbable without new physics*

see reviews [Carr,Kuhnel,Sandstad,17; Khlopov,10]

• Many early Universe production mechanisms

(e.g. scalar fields, baryogenesis, inflation, phase transitions, topological defects)

- Can estimate BH mass from formation time: $M_{\rm BH} \sim t$
- Thus, PBHs can span vast mass range (with mass spectrum):

General Setup

• If PBH form DM

→ many in DM-rich environments (e.g. Galactic Center)

• GC contains highest SN/star-formation rate

 \rightarrow many neutron stars (NS), typically spinning (pulsars)

General Setup

- If PBH form DM
 - → many in DM-rich environments (e.g. Galactic Center)
- GC contains highest SN/star-formation rate

 \rightarrow many neutron stars (NS), typically spinning (pulsars)

• Thus, NS-PBH interactions (~ $\rho_{\rm DM} \times \rho_{\rm NS}$) should be rather generic

General Setup

- If PBH form DM
 - \rightarrow many in DM-rich environments (e.g. Galactic Center)
- GC contains highest SN/star-formation rate

 \rightarrow many neutron stars (NS), typically spinning (pulsars)

• Thus, NS-PBH interactions ($\sim \rho_{\rm DM} \times \rho_{\rm NS}$) should be rather generic

... what are the astrophysical consequences?

Compact Star Formation

V. Takhistov IPMU

Millisecond Pulsars

Anticipating role of angular momentum, focus on pulsars with fastest rotation
 → millisecond pulsars (MSP)

Millisecond Pulsars

- Anticipating role of angular momentum, focus on pulsars with fastest rotation

 — millisecond pulsars (MSP)
- Around 10-50% pulsars become MSP [Lorimer,13]

 \rightarrow binary pulsar accretes matter from companion, spun-up and "recycled" \rightarrow MSP

Image: NASA/Dana Berry

Millisecond Pulsars

- Anticipating role of angular momentum, focus on pulsars with fastest rotation \rightarrow millisecond pulsars (MSP)
- Around 10-50% pulsars become MSP [Lorimer,13]

 \rightarrow binary pulsar accretes matter from companion, spun-up and "recycled" \rightarrow MSP

Population vs. rotation period:

[Cordes,Chernoff,97; Lorimer,13]

Image: NASA/Dana Berry

V. Takhistov

NS-PBH Capture

• <u>Case A</u>: PBH captured during star formation \rightarrow unlikely [Capela, Pshi

[Capela, Pshirkov, Tinyakov, 13-14]

NS-PBH Capture

<u>Case A</u>: PBH captured during star formation — unlikely—

[Capela, Pshirkov, Tinyakov, 13-14]

• <u>Case B</u>: PBH captured during NS lifetime

NS-PBH Capture

<u>Case A</u>: PBH captured during star formation — unlikely

[Capela, Pshirkov, Tinyakov, 13-14]

• <u>Case B</u>: PBH captured during NS lifetime

Stage 1: gravitational capture

- \rightarrow PBH approaches and passes through NS
- ightarrow loses energy by dynamical friction $\, f_{
 m dyn} \,$

<u>Case A</u>: PBH captured during star formation — unlikely—

[Capela, Pshirkov, Tinyakov, 13-14]

• <u>Case B</u>: PBH captured during NS lifetime

Stage 1: gravitational capture

- \rightarrow PBH approaches and passes through NS
- ightarrow loses energy by dynamical friction $\, f_{\mathrm{dyn}} \,$
- \rightarrow if $E_{\rm loss} > {\rm KE_{\rm PBH}} \rightarrow$ captured !

[Capela, Pshirkov, Tinyakov, 13-14]

• <u>Case B</u>: PBH captured during NS lifetime

Stage 2: PBH in NS

 \rightarrow captured PBH continues passing through NS, until it settles inside

[Capela, Pshirkov, Tinyakov, 13-14]

• <u>Case B</u>: PBH captured during NS lifetime

Stage 3: BH grows inside

 \rightarrow PBH inside NS grows via Bondi spherical accretion, consuming the host star

Pulsar Lifetime

• <u>Pulsar lifetime:</u> $\langle t_{\rm NS} \rangle = 1/F + t_{\rm set} + t_{\rm con}$

Pulsar Lifetime

• <u>Pulsar lifetime:</u> $\langle t_{\rm NS} \rangle = 1/F + t_{\rm set} + t_{\rm con}$

- Find O(1-10)% of NS consumed in Galactic time
 - \rightarrow <u>consistent</u> with observed missing pulsars [Dexter,O'Leary,14]

Pulsar Lifetime

• <u>Pulsar lifetime:</u> $\langle t_{\rm NS} \rangle = 1/F + t_{\rm set} + t_{\rm con}$

- Find O(1-10)% of NS consumed in Galactic time
 - \rightarrow <u>consistent</u> with observed missing pulsars [Dexter,O'Leary,14]

Bonus: <u>consistent</u> with recently discovered young GC magnetar [Mori+,13; Kennea+,13] \rightarrow shows unusual activity ... a hint of PBH consumption ??

Growing BH in Stars

• Previously, general studies considered BH growing inside a spherical star (Sun, NS)

[Markovic,95; Kouvaris,Tinyakov,13]

Growing BH in NS: angular momentum transfer

MSP spinning near mass shedding limit → elongated spheroid (Roche lobe model)
 [Shapiro,Teukolsky,83]

Growing BH in NS: angular momentum transfer

MSP spinning near mass shedding limit → elongated spheroid (Roche lobe model)
 [Shapiro,Teukolsky,83]

Growing BH in NS: angular momentum transfer

MSP spinning near mass shedding limit → elongated spheroid (Roche lobe model)
 [Shapiro,Teukolsky,83]

Add BH : assume NS continues as rigid rotator (infalling an. mom. transferred out)
Growing BH in NS: angular momentum transfer

MSP spinning near mass shedding limit → elongated spheroid (Roche lobe model)
 [Shapiro,Teukolsky,83]

Add BH : assume NS continues as rigid rotator (infalling an. mom. transferred out) \rightarrow analytically can show that matter exceeds escape velocity \rightarrow ejected mass !!

• Ejected mass:

• Ejected mass:

• Population averaged: $\langle M_{\rm ej} \rangle \sim \mathcal{O}(0.2) M_{\odot}$

• Ejected mass:

- Population averaged: $\langle M_{\rm ej} \rangle \sim \mathcal{O}(0.2) M_{\odot}$
- Ejecta neutron rich \rightarrow a site of r-process nuclesynthesis?

• <u>(R)apid-process nucleosynthesis:</u>

[long list (Meyer,Schramm, others)]

- dominant mechanism for heavy element production
- neutrons capture on seed nuclei faster than β -decay \rightarrow build up heavy elements
- very sensitive to environment

(R)apid-process nucleosynthesis:

[long list (Meyer,Schramm, others)]

- dominant mechanism for heavy element production
- neutrons capture on seed nuclei faster than β -decay \rightarrow build up heavy elements
- very sensitive to environment

Image: Los Alamos, Nuclear Data Group

V. Takhistov IPMU

• <u>(R)apid-process nucleosynthesis:</u>

[long list (Meyer,Schramm, others)]

- dominant mechanism for heavy element production
- neutrons capture on seed nuclei faster than β -decay \rightarrow build up heavy elements
- very sensitive to environment
- Leading production sites: SN, compact object mergers (COM)
 - ... each has problems

recent GW detection w/ a short GRB ...

• <u>(R)apid-process nucleosynthesis:</u>

[long list (Meyer,Schramm, others)]

- dominant mechanism for heavy element production
- neutrons capture on seed nuclei faster than β -decay \rightarrow build up heavy elements
- very sensitive to environment
- <u>Leading production sites:</u> SN, compact object mergers (COM)

... each has problems

• PBH-NS: [Kouvaris,Tinyakov,13]

 \rightarrow BH provides only slight heating \rightarrow cold ejecta

 \rightarrow neutrino emission negligible \rightarrow don't spoil r-process [Meyer,McLaughlin,Fuller,98]

• <u>(R)apid-process nucleosynthesis:</u>

[long list (Meyer,Schramm, others)]

- dominant mechanism for heavy element production
- neutrons capture on seed nuclei faster than β -decay \rightarrow build up heavy elements
- very sensitive to environment
- <u>Leading production sites:</u> SN, compact object mergers (COM)
 - ... each has problems
- PBH-NS: [Kouvaris, Tinyakov, 13]
 - \rightarrow BH provides only slight heating \rightarrow cold ejecta
 - \rightarrow neutrino emission negligible \rightarrow don't spoil r-process [Meyer,McLaughlin,Fuller,98]

PBH-NS r-process material O(10) larger than COM, several orders vs. SN !!

• R-process material in Galaxy: $\sim 10^4 M_{\odot}$

• R-process material in Galaxy: $\sim 10^4 M_{\odot}$

Recent UFD observations show consistency with 1 rare r-process event [Ji+,16]

 — difficult for SN and COM ... how about PBH?

• R-process material in Galaxy: $\sim 10^4 M_{\odot}$

• Recent UFD observations show consistency with 1 rare r-process event [Ji+,16] \rightarrow difficult for SN and COM ... how about PBH?

Other Signatures

Kilonova

- R-process nuclei build up and β -decay, resulting in EM emission
 - \rightarrow faint infrared after-glow days after event !

Other Signatures

Kilonova

- R-process nuclei build up and β -decay, resulting in EM emission
 - \rightarrow faint infrared after-glow days after event !

511-keV line

- Ejecta heated by β-decay and fission, generate many equilibrium positrons
 - \rightarrow find rate/energy matches with 511-keV line from positron-electron annihilation !

Other Signatures

Kilonova

- R-process nuclei build up and β -decay, resulting in EM emission
 - \rightarrow faint infrared after-glow days after event !

511-keV line

- Ejecta heated by β-decay and fission, generate many equilibrium positrons
 - \rightarrow find rate/energy matches with 511-keV line from positron-electron annihilation !

Fast Radio Bursts (FRB)

 Large energy release stored in magnetic flux tubes, if only (1-10)% of energy converted to radio waves → non-repeating FRB !

PART II:

Positrons from PBH GRBs (and Microquasars)

Based on: Takhistov [arXiv:1710.09458]

Positron Excess

• Experiments see positron excess above 30 GeV (AMS-02, Pamela, Fermi)

[Adriani+ (PAMELA),13; Ackermann+ (FERMI), 11; Aguilar+ (AMS), 13]

Positron Excess

• Experiments see positron excess above 30 GeV (AMS-02, Pamela, Fermi)

[Adriani+ (PAMELA),13; Ackermann+ (FERMI), 11; Aguilar+ (AMS), 13]

Many proposed explanations, mainly particle DM, astrophysical sources

Positron Excess

• Experiments see positron excess above 30 GeV (AMS-02, Pamela, Fermi)

[Adriani+ (PAMELA),13; Ackermann+ (FERMI), 11; Aguilar+ (AMS), 13]

Many proposed explanations, mainly particle DM, astrophysical sources

PBHs can combine proposals of astro-sources with **DM** !

• Short GRBs: irregular EM emissions $t \sim 0 - 2s$, $E \sim 10^{48} - 10^{50} erg$

- Short GRBs: irregular EM emissions $t \sim 0 2s$, $E \sim 10^{48} 10^{50} erg$
- Standard production (e.g. NS-NS merger): BH + accretion disk

- Short GRBs: irregular EM emissions $t \sim 0 2s$, $E \sim 10^{48} 10^{50} erg$
- Standard production (e.g. NS-NS merger): BH + accretion disk

- Short GRBs: irregular EM emissions $t \sim 0 2s$, $E \sim 10^{48} 10^{50} erg$
- Standard production (e.g. NS-NS merger): BH + accretion disk

BH + NS : assume BH captures most of NS angular momentum

→ can analytically show: **formation of accretion disk generic!**

* without merger GWs

BH + NS : assume BH captures most of NS angular momentum

→ can analytically show: **formation of accretion disk generic!**

Jet Launching

• Jet launching mechanisms:

A) neutrino-antineutrino annihilation \rightarrow hot disk

- B) MHD winds (Blandford-Payne) \rightarrow magnetized disk [Blandford, Payne,82]
- C) Blandford-Znajek → magnetized spinning BH [Blandford,Znajek,77]

Jet Launching

• Jet launching mechanisms:

A) neutrino-antineutrino annihilation \rightarrow hot disk

- B) MHD winds (Blandford-Payne) \rightarrow magnetized disk [Blandford, Payne,82]
- C) Blandford-Znajek \rightarrow magnetized spinning BH [Blandford,Znajek,77]

Jet Launching

• Jet launching mechanisms:

A) neutrino-antineutrino annihilation \rightarrow hot disk

- B) MHD winds (Blandford-Payne) \rightarrow magnetized disk
- C) Blandford-Znajek → magnetized spinning BH [Blandford,Znajek,77]

[Blandford, Payne,82]

from PBHs:

Accelerated Positrons

[loka,08; Bertone,Kusenko+,04]

Jet relativistic → result in GeV-TeV accelerated positrons

• Positrons diffuse, for 100 GeV diffusion time $t \sim 10^6 \text{yrs}$ [Strong,Moskalenko,Reimer,04]

 GRBs can account for excess if occurred during diffusion time [loka,08] (alternatively, a continuous micro-quasar jet shinning for the duration)

Positron Excess from PBHs

PART III:

Transmuted GW Signals from PBHs

Based on: Takhistov [arXiv:1707.05849]

Tiny PBHs from the Past

If tiny PBHs consumed stars in the past,

how to see today?

Tiny PBHs from the Past

If tiny PBHs consumed stars in the past,

how to see today?

Solar-mass BHs: in astrophysics

• Smallest astrophysical black holes

<u>observed</u>: $\sim 5-10 M_{\odot}$ [Shaposhnikov, Titarchuk, 09]

Solar-mass BHs: in astrophysics

• Smallest astrophysical black holes

<u>observed</u>: $\sim 5-10 M_{\odot}$ [Shaposhnikov, Titarchuk, 09]

predicted: $\sim 2-3M_{\odot}$ [Kalogera,Baym,96]
Solar-mass BHs: in astrophysics

Smallest astrophysical black holes

<u>observed</u>: $\sim 5 - 10 M_{\odot}$ [Shaposhnikov, Titarchuk, 09]

predicted: $\sim 2-3M_{\odot}$ [Kalogera,Baym,96]

- \rightarrow set by Tolman-Oppenheimer-Volkoff stability limit for NSs
- \rightarrow Chandrasekhar limit on WDs is smaller ($\sim 1.4 M_{\odot}$)
 - ... but result is a Type-Ia supernova, without remnant

Solar-mass BHs: in astrophysics

Smallest astrophysical black holes

<u>observed</u>: $\sim 5 - 10 M_{\odot}$ [Shaposhnikov, Titarchuk, 09]

predicted: $\sim 2-3M_{\odot}$ [Kalogera,Baym,96]

- \rightarrow set by Tolman-Oppenheimer-Volkoff stability limit for NSs
- \rightarrow Chandrasekhar limit on WDs is smaller ($\sim 1.4 M_{\odot}$)
 - ... but result is a Type-Ia supernova, without remnant

• <u>PBH-star systems</u>: solar mass BH factories

• <u>PBH-star systems</u>: solar mass BH factories

• <u>PBH-star systems</u>: solar mass BH factories

Important: amount of ejected mass

• <u>PBH-star systems</u>: solar mass BH factories

Important: amount of ejected mass

Compact Object Mergers

Image: Bartos, Kowalski, "Multimessenger Astronomy"

Binary GW Signals

Transmuted GW Signals

- <u>General features</u> (e.g. merger time, GW luminosity)
 - \rightarrow depend on chirp mass $\mathcal{M}_c(M_1, M_2) \rightarrow$ same if no mass change
 - \rightarrow if ejected mass significant \rightarrow see difference

Transmuted GW Signals

- <u>General features</u> (e.g. merger time, GW luminosity)
 - \rightarrow depend on chirp mass $\mathcal{M}_c(M_1, M_2) \rightarrow$ same if no mass change

 \rightarrow if ejected mass significant \rightarrow see difference

- Main discriminating factors vs. NS-NS and BH-BH:
 - Merger phase (e.g. disk formation, intermediate NS, delayed sGRB)
 - ringdown phase

Transmuted GW Signals

- <u>General features</u> (e.g. merger time, GW luminosity)
 - \rightarrow depend on chirp mass $\mathcal{M}_c(M_1, M_2) \rightarrow$ same if no mass change

 \rightarrow if ejected mass significant \rightarrow see difference

- Main discriminating factors vs. NS-NS and BH-BH:
 - Merger phase (e.g. disk formation, intermediate NS, delayed sGRB)
 - ringdown phase

mostly happens at higher frequencies, distinguishing with aLIGO can be a challenge

GW Detection

- Transmuted NS signals \rightarrow detectable by LIGO
- Transmuted WD signals \rightarrow detectable by LISA

GW Detection

- Transmuted NS signals → detectable by LIGO
- Transmuted WD signals → detectable by LISA

Detection

• Coincidence signals possible (e.g. double kilonova)

Evade constraints from solar mass PBHs

solar BH mass important PBH probe !

Summary

- PBHs appear in many BSM scenarios, plausible at least some contribution to DM
- Recent interest in PBHs uncovered a lot of previously overlooked physics

Summary

- PBHs appear in many BSM scenarios, plausible at least some contribution to DM
- Recent interest in PBHs uncovered a lot of previously overlooked physics

Compact Stars as PBH Laboratories

Possibility to Address Major Astronomy Puzzles !

- r-process nucleosynthesis abundance (MW, dSph)
- GC 511 keV line
- origin of fast radio bursts
- [partial] missing GC pulsars
- origin of sGRBs, accretion disk formation
- positron excess

Summary

- PBHs appear in many BSM scenarios, plausible at least some contribution to DM
- Recent interest in PBHs uncovered a lot of previously overlooked physics

Compact Stars as PBH Laboratories

New Predictions ... New Lamp-posts

- Solar-mass BHs, without solar-PBH constraints
- New GW signals from NS, WD binaries
- New kilonova, without merger GWs
- SGRBs without merger GWs
- Binaries: double kilonova, sGRBs ...
- New solar micro-quasars
- Discrete events \rightarrow differentiate with WIMP capture

Thank You for Attention!

