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Nucleosynthesis – example rapid neutron capture
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Compact Object Neutrino & Nuclear Physics

Single Core Collapse to Hot Neutron Star

Modest Initial Neutron Excess –
evolving toward . . . ?? 

Merging Cold Neutron Stars

Very Neutron-rich initially
– heating and evolving toward 

lower n-richness in ejecta ? ?

Event rate, 
amount of ejecta right,
troubles with neutrinos

Event rate?
Ejecta mass 
per event?



r-Process arithmetic



B. Cote et al. “The Origin of the r-Process Elements in the Milky Way”
arXiv:1710.05875

GW170817 shows a kilonova signal – showing that 

If this event is representative of all binary neutron star (BNS) mergers then the bulk

f the r-process materila in the Galaxy could have been made in these events



neutron star mergers

Nucleosynthesis of heavy elements:
r-process and its astrophysical site

Almudena Arcones
Helmholtz Young Investigator Group

Cas A (Chandra X-Ray observatory) Rezzolla et al.

INT Workshop: The r-process: status and challenges
July 28 - August 1, 2014

Merg er Ejecta & Nucleosynthesis

Tidal ejecta: 

Early, and very 

neutron-rich. 

Robust r-process. 

Shocked ejecta: 

Processed by neutrinos, much like 

in a supernova.   

Amount and composition of the material ejected 

depends on the neutron star radius and neutrino 

interactions in dense matter. 







Ejecta and GRB afterg low: KilonovaTransient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, 

Goriely et al. 2011): direct observation of r-process, EM counter part to GW

Radioactive decay in neutron star mergers

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, Bauswein et al. 2013)

Berger, Fong & Chornock, 2013

Tanaka & Hotokezaka, 2013, Hotokezaka et al. 2013

Grossman, Korobkin, Rosswog, Piran, 2014

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, 

Goriely et al. 2011): direct observation of r-process, EM counter part to GW

Radioactive decay in neutron star mergers

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, Bauswein et al. 2013)

Berger, Fong & Chornock, 2013

Tanaka & Hotokezaka, 2013, Hotokezaka et al. 2013

Grossman, Korobkin, Rosswog, Piran, 2014

• Radioactive heavy elements 

synthesized and ejected can 

power an EM signal

Metzger et al.  2010, Roberts et al. 2011, 

Goriely et al. 2011

• Magnitude and color of the 

optical emission is sensitive 

to the composition of the 

ejecta. 

Kasen 2013

Detection of a Kilonova 
Tanvir et al.  2013





Chemical evolution of dwarf galaxies ---

-- hangs on many of the nucleosynthesis observations – see Frebel’s work on Reticulum II
-- insights into the effectiveness of baryonic feedback
-- insights into the nature of dark matter and the origin of structure 





Other ways . . . Disassembling neutron stars



“Primordial Black Holes and r-Process Nucleosynthesis, GMF, A. Kusenko, V. Takhistov, PRL, 119, 061101 (2017)
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Supermassive Stars

Jung-Tsung Li, GMF, Chad T. Kishimoto arXiv:1708.05292
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Entropy per 
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whenever the pressure support for the star is from particles moving near the speed of light
the star is “trembling on the verge of instability”



These stars go unstable as a result of the

Feynman-Chandrasekhar General Relativistic instability

and (for zero initial metals) collapse to a black hole.

This collapse is non-homologous on account

of prodigious neutrino-pair production/loss.

Fuller, Woosley, Weaver Ap. J., 307, 675 (1986)

The star largely is transparent to neutrinos until

a trapped surface forms.
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Supermassive Stars





Neutrino/antineutrino

energy spectra resulting from

electron/positron annihilation

in a plasma with temperature T

Ratio of fluxes:

Why? electron flavor neutrinos

have both neutral and charged

current production channels;

mu and tau flavor neutrinos 

produced only in the

neutral current channel

dotted line 

X. Shi & G. M. Fuller, Astrophys. J. 503, 307 (1998).



X. Shi & G. M. Fuller, Astrophys. J. 503, 307 (1998).



Linear memory!

• 

• 

• 

 

 

 

MaAer	ejected	to	infinity	
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The gravitational-wave with “memory” !

• Non-oscilla?ng	part	in	the	waveform	

• Produce	permanent	changes	in	the	separa?on	of	free-fall	test	masses.	

• Ini?al	strain	hTTij=0	before	the	signal	arrives;	and	non-zero	strain	h
TT
ij≠0	a\ er	the	

signal	has	passed:	

	

• Leave	a	DC	(constant)	offset	on	the	strain	a\ er	the	burst	has	passed	by.	

∆hmem = h(t ! 1 ) − h(t ! −1 )

(Two	stars	in	a	hyperbolic	orbit)	

Δhmem	
L	

δxmem =
L

2
∆hmem

+

Kovacs	&	Thorne,	ApJ,224.,62	(1978)	





Right: 
https://arxiver.wordpress.com/2016/10/27/detecting-the-gravitational-wave-background-from-primordial-black-hole-dark-matter-cea/#jp-carousel-203276

Left:

Adhikari, Rana X Rev.Mod.Phys. 86 (2014) 121 arXiv:1305.5188 [gr-qc] LIGO-P1200121

DECIGO constellation concept~¥cite{Sato:DECIGO2009}

Cosmological test of gravity with polarizations of stochastic gravitational waves 
around 0.1-1 Hz - Nishizawa, Atsushi et al.
Phys.Rev. D81 (2010) 104043 arXiv:0911.0525 [gr-qc]














