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SUMMARY 

The existence of galaxies today implies that the early Universe must have 
been inhomogeneous. Some regions might have got so compressed that they 
underwent gravitational collapse to produce black holes. Once formed, black 
holes in the early Universe would grow by accreting nearby matter. A first 
estimate suggests that they might grow at the same rate as the Universe during 
the radiation era and be of the order of 1015 to 1017 solar masses now. The 
observational evidence however is against the existence of such giant black 
holes. This motivates a more detailed study of the rate of accretion which 
shows that black holes will not in fact substantially increase their original 
mass by accretion. There could thus be primordial black holes around now 
with masses from io~5 g upwards. 

I.INTRODUCTION 

Black holes are normally thought of as being produced by the collapse of stars 
or possibly galactic nucleii. However, one would also expect there to be a certain 
number of black holes with masses from io~~5 g upwards which were formed in 
the early stages of the Universe (Hawking 1971). This is because the existence of 
galaxies implies that there must have been departures from homogeneity and 
isotropy at all times in the history of the Universe. These could have been very 
large in the early stages and even if they were small on average there would be 
occasional regions in which they were large. One would therefore expect at least 
a few regions to become sufficiently compressed for gravitational attraction to 
overcome pressure forces and the velocity of expansion and cause collapse to a 
black hole. We shall refer to such black holes as primordial. 

A region in the early Universe of radius R has a potential energy of self-gravita- 
tion 

Í2 ~ -^5 

and kinetic energy of expansion 
T - ilR*& 

where ¡jl is the energy density and units are such that G = c = 1. In a& = o 
Friedmann universe the sum of these energies is zero. Thus 

In the radiation epoch, when most of the particles are relativistic, the pressure 
p is and /x is proportional to R~A. Thus 

¡JL ~ R oc £1/2. 

In the very early stages (¿<io“4s) it is possible that the number of different 
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Fundamental questions about primordial black holes

• When and how are they form? 
• When and how can we infer their existence? 

What would it take to establish their existence?

• Direct observation (e.g., gravitational waves)
• Indirect observation (e.g., effects in the early universe, CMB, energetic 

backgrounds, lensing, stellar dynamics, merger rates, etc….
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We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We
find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of
a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current
observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility
that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
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The nature of dark matter remains an open question
almost a century after its discovery [1,2]. Direct and
indirect detection experimental searches [3–5] as well as
the Large Hadron Collider [6,7] have been searching for
a weakly interacting massive particle (WIMP) as a dark
matter candidate with no positive results to date. The
parameter space of axion dark matter is also shrinking
with no evidence of a detection [8]. From the astrophysical
perspective, massive compact halo objects (MACHOs)
have for the most part been ruled out with microlensing
experiments [9–11]. At the high mass end, wide binaries in
the Milky Way provide the strongest constraints [12–14].
An alternative to particle dark matter is that dark matter is

composed of primordial black holes formed in the early
universe prior to big bang nucleosynthesis [15–18]. These
black holes can span a wide range of masses from 10−18 M⊙
(where Hawking radiation [19] limits their current abun-
dance) to 106 M⊙. Recently cosmic microwave background
(CMB) constraints [20,21] have ruled out primordial black
holes with mass ∼102 M⊙ as the dominant form of dark
matter.
The excitement surrounding the recent discovery of

gravitational waves by LIGO [22] led to the suggestion
that the observed black hole pairs that gave rise to the
gravitational wave events (with a mass m ∼ 30 M⊙) were
primordial black holes [23–27]. It was shown that if the
dark matter is composed of primordial black holes, then the
LIGO events can be due to their mergers [23]. The related
mass range is weakly constrained by studies that probe the
low mass end of black hole masses (e.g., microlensing) or
studies that place constraints on the high-mass end (e.g., the
CMB [20], the half-light radius of dwarf galaxies [28,29],
and wide binaries in the Milky Way [14]).
In this Letter we examine this hypothesis in the context

of the observed distribution of stars in dwarf galaxies.
These are dark matter dominated galaxies, composed of old
stars (e.g., Ref. [30]) and located at distances of at least tens
of parsecs to hundreds of kiloparsecs [31]. The number of
known systems of this type has increased over the last

10 years due to the Sloan Digital Sky Survey [32–36] and
the Dark Energy Survey [37,38].
A particular system that has been extensively studied over

the past decade is the Segue 1 dwarf galaxy [39–41].
Spectroscopic studies show that it is dark matter dominated
[42] and that its stellar population is old [30], with no
evidence of any major disruption or interaction [43]. We use
Segue 1 to demonstrate the effect of primordial black hole
dark matter because it is well studied, although a similar
analysis can be applied to other dark matter dominated
systems in the future.
Assuming that massive black holes are the dark matter

(or some fraction fDM of it), dwarf galaxies are collisionless
systems with stars of mass ms ∼ 1 M⊙ and black holes of
mass mBH ≫ ms. Both stars and black holes respond to the
underlying gravitational potential.
The dynamics of two component collisionless systems

have been studied by Spitzer [44,45] who showed that
relaxation leads to equipartition, where the average kinetic
energy of the light component (e.g., stars) is equal to the
average kinetic energy of the heavy component (e.g., black
holes). Mass segregation takes effect over the relaxation
time scale, whereas the light particles move outwards while
the heavy particles sink towards the center. The physics of
mass segregation is similar to dynamical friction where
multiple scattering encounters between the two populations
lead to energy exchange (see, e.g., Ref. [46]). It follows
naturally that the light particles move on average faster than
the heavy particles and thus reside at larger radii.
We use these results to explore the evolution of the

stellar distribution in dwarf galaxies. We begin by defin-
ing the mean change in velocity due to scattering along the
tangential and normal to the direction of motion of the
star as Δv∥ and Δv⊥, respectively. Assuming that both
species (stars of massms and black holes of massmBH) are
described by a Maxwellian velocity distribution function,
the diffusion coefficient (average change of kinetic energy
per unit mass and time) of stellar particles due to their
scattering off black holes is [47]
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15 The discovery of gravitational waves from merging pairs
16 ofmassive black holes [1–4] has opened a newwindow to the
17 astrophysics of black holes, their formation, and cosmic
18 evolution. Black holes of stellar masses have been observed
19 with LIGO [1–4] and supermassive black holes in galaxies
20 are expected to be detected by LISA over the next couple of
21 decades [5–7]. The sensitivity of the next generation of
22 ground-based gravitational wave detectors is expected to
23 improve by at least an order of magnitude [8], thus allowing
24 the detection of merging black hole events out to the highest
25 redshifts, potentially exceeding the reach of electromagnetic
26 observations that respond to amplitude squared and not
27 amplitude.
28 The expected rates of black hole mergers have been
29 calculated based on the number and properties of the few
30 events discovered to date (see, e.g., Refs. [9–11]). The rate
31 depends on a multitude of factors: black holes must be
32 formed and they must find a way to get close enough so that
33 gravitational waves can takeover as the dominant energy loss
34 mechanism. The redshift distribution encodes information
35 about the origin of black hole pairs. If black holes originate
36 frommassive stellar progenitors then the redshift distribution
37 should relate to the formation, accretion, and cooling of gas
38 in galaxies. If, on the other hand, the black holes are
39 primordial [12–16], then the redshift distribution will extend
40 to earlier cosmic times due to primordial binaries [17].
41 A key difference between these two scenarios is that in the
42 case of a baryonic origin, black holes must form out of cold
43 gas, which accreted into a dark matter gravitational potential
44 well, and then cooled to form black hole progenitors. This
45 path follows the abundance of appropriate potential wells.
46 In this Letter we calculate the maximum redshift of
47 expected black hole merger events that have baryonic origin
48 in the standard cosmological model. That is, the black holes
49 are formed in galaxies as opposed to primordial black
50 holes, or black holes that are formed in nonstandard
51 cosmological scenarios, e.g., cosmologies with a significant

52non-Gaussianity in the primordial density fluctuations of the
53dark matter.
54The significance of this calculation is twofold: First, it
55defines a maximum redshift over which baryonic structures
56can form, and, second, any detection above the derived
57bound will signify the presence of either non-Gaussianities
58that control the formation of baryonic structures at unex-
59pectedly high redshifts, or that black hole events may be
60due to primordial black holes.
61In the following we make two key assumptions in the
62derivation of a maximum redshift of baryonic black hole
63gravitational wave events. First, we conservatively assume
64that black hole pairs merge instantaneously; i.e., there is no
65time lag between the formation of black holes, the
66evolution of the binary, and the subsequent sequence of
67events that leads to a merger. Second, we conservatively
68assume that all gas accreted in dark matter halos ends up in
69stars that end up in black holes. Realistically, both of these
70assumptions are vastly optimistic. However, their applica-
71tion guarantees that the derived maximum redshift is indeed
72a very hard limit and thus any observation that violates this
73bound will be of enormous scientific significance.
74We begin by calculating the number of observed gravi-
75tational wave events per year greater than redshift z as the
76integral of the rate of black holemergers per redshift interval,

N ð> zÞ ¼
Z

∞

z

dR
dz

dz; ð1Þ

7778where dR=dz is the rate of merger events per redshift
79interval,

dR
dz

≡
Z

∞

MminðzÞ

dN
dMdV

CNGðM; zÞ

×
hϵðM; zÞi
ð1þ zÞ

_MgðM; zÞ
2mBH

dV
dz

dM: ð2Þ
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We use these results to explore the evolution of the
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ing the mean change in velocity due to scattering along the
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uū, dd̄, ss̄, cc̄, gg

101 102 103

Mass [GeV]

10�27

10�26

10�25

10�24

10�23

h�
v
i

[c
m

3

s�
1

]

µ+µ�

101 102 103

Mass [GeV]

10�27

10�26

10�25

10�24

10�23

h�
v
i

[c
m

3

s�
1

]

ZZ

FIG. 11: Annihilation cross section limits from the joint analysis of 20 dwarf galaxies. The shaded band is the systematic 1�

uncertainty in the limit derived from many realizations of halo J-profiles of the dwarfs consistent with kinematic data. The
solid line depicts the median of this distribution of limits over the halo realizations. The thin dashed line corresponds to the
benchmark value of the required relic abundance cross section (3 ⇥ 10�26cm3

/s), while the solid horizontal line corresponds
to the detailed calculation of this quantity derived by Steigman et al. [18]. The observed limits are below this latter curve
for masses less than [0, 26, 54] GeV (for annihilation into bb̄), [18, 29, 62] GeV (⌧+

⌧

�), [21, 35, 64] GeV (uū, dd̄, ss̄, cc̄, and gg),
[87, 114, 146] GeV (��), and [5, 6, 10] GeV (e+

e

�), where the quantities in brackets are for the �1�, median, and +1� levels of
the systematic uncertainty band. A machine-readable file tabulating these limits is available as Supplemental Material.

observed test statistic. The signal significance is shown
assuming the two di↵erent background PDFs. An as-
sumption of a Poisson background does not describe the
actual background in many cases and can lead to a mis-
takenly large detection significance.

The di�culty in fitting a multi-component Poisson
background model is illustrated in Fig. 4 of [92]. There,
“blank sky locations” are used to test whether the like-
lihood ratio test statistic is accurately described by an
“asymptotic” �2 distribution. This sampling of blank sky
locations is analogous to the empirical background sam-
pling developed in [48] and employed in the present work.
Ackermann et al. [92] found that the blank sky PDF of
the test statistic deviated from the �2 distribution at

large values of the test statistic. One of the reasons for
the deviation could be that the background model is not
flexible enough to describe the true background. Carl-
son et al. [56] present evidence that unresolved blazars
and radio sources are at least partly responsible for the
insu�ciency of the background treatment used in [92].

The blank sky location sampling of Ackermann et al.
[92, Fig. 4] reduces the tail probability of a TS = 8.7
observation to a local p-value of 0.13. This corresponds
to a significance of 2.2� which can be directly compared
to the values shown in our Figs. 8, 9, and 10. Thus,
when calibrating the detection significance using an em-
pirical sampling of the background, the results of Acker-
mann et al. [92] are closer in line with what we find. We

This value reproduces our 
observed Universe.

Too much dark matter (universe 
closed)

WIMPs are NOT the dominant dark 
matter component

2008

2014

Dwarf galaxies — state of the art constraints on h�vi

�� ! q,s, `,s, etc.

Geringer-Sameth, Koushiappas & Walker, PRD 91, 083535 (2015), 
see also ApJ 801, 74 (2014) & Ackermann et al., PRD 89, 042001 (2014) & 1503.02641
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Courtesy A. V. Kravtsov

Small scales collapse first. The smaller the perturbation 
the earlier it collapses, the higher its density.

Dark matter halos contain high density dark matter substructure

The structure of substructure

Courtesy A. V. Kravtsov



Accreted subhalo

Host halo

Courtesy A. V. Kravtsov

Koushiappas, Zentner & Walker, PRD 69,  043501 (2004), but see also Baltz, Tayor & Wai, 
ApJ 659, L125 (2006), Kuhlen, Diemand & Madau , arXiv:0805.4416

The spectrum of dark matter subhalo properties originates 
from the host assembly history — a random realization set 
by initial conditions.

The structure of substructure



Host halo

Courtesy A. V. Kravtsov

Koushiappas, Zentner & Walker, PRD 69,  043501 (2004), but see also Baltz, Tayor & Wai, 
ApJ 659, L125 (2006), Kuhlen, Diemand & Madau , arXiv:0805.4416

These two may have the same mass, 
but different history

The spectrum of dark matter subhalo properties originates 
from the host assembly history — a random realization set 
by initial conditions.

The structure of substructure



Courtesy A. V. Kravtsov

Host halo

Koushiappas, Zentner & Walker, PRD 69,  043501 (2004), but see also Baltz, Tayor & Wai, 
ApJ 659, L125 (2006), Kuhlen, Diemand & Madau , arXiv:0805.4416

The spectrum of dark matter subhalo properties originates 
from the host assembly history — a random realization set 
by initial conditions.

Time (age)
13.4 Gyrs 7 Gyrs

The structure of substructure



Courtesy A. V. Kravtsov

Koushiappas, Zentner & Walker, PRD 69,  043501 (2004)

Koushiappas, Zentner & Walker, PRD 69,  043501 (2004), but see also Baltz, Tayor & Wai, 
ApJ 659, L125 (2006), Kuhlen, Diemand & Madau , arXiv:0805.4416

The spectrum of dark matter subhalo properties originates 
from the host assembly history — a random realization set 
by initial conditions.

Host halo
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Courtesy A. V. Kravtsov

If these dark matter potential wells contain stars we 
call them dwarf galaxies

Koushiappas, Zentner & Walker, PRD 69,  043501 (2004), but see also Baltz, Tayor & Wai, 
ApJ 659, L125 (2006), Kuhlen, Diemand & Madau , arXiv:0805.4416

Host halo

The structure of substructure
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- High mass-to-light ratio (i.e., dark matter dominated, very few stars)
- No known astrophysical background (no gas, stars are old)

Dwarf galaxies



A Recent Flurry of Discoveries

13From Keith Bechtol’s talk TAUP 2015

SDSS

DES

Dwarf galaxies
December 15, 2017  new DES 
dwarfs according to my secret 
reliable DES source!}



n(r) / f(v)

Stellar kinematics

(Newton)

(Jeans)v / f 0(�?)

- High mass-to-light ratio (i.e., dark matter dominated, very few stars)
- No known astrophysical background (no gas, stars are old)

Dwarf galaxies: reconstructing the gravitational potential well
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Dwarf galaxies: reconstructing the gravitational potential well

The Astrophysical Journal, 801:74 (18pp), 2015 March 10 Geringer-Sameth, Koushiappas, & Walker

and (6) are x = −∞ and x = +∞, and dx = dℓ. The dark
matter density is a function of r =

√
b2 + x2, the distance from

the center of the dwarf, so that ρ(ℓn̂) is given by ρ(
√

b2 + x2).

3. RECONSTRUCTING THE DARK MATTER POTENTIAL
WITH STELLAR KINEMATICS

3.1. Dark Matter Density

In order to accurately quantify uncertainties in the spatial
distribution of dark matter it is necessary to use a suitably
flexible functional form for the density profile (Bonnivard
et al. 2015). Following Charbonnier et al. (2011), we adopt
the functional form introduced by Zhao (1996) to generalize the
Hernquist (1990) profile. In this spherically symmetric model,
the density of dark matter at halo-centric radius r is

ρ(r) = ρs

(r/rs)γ
[
1 + (r/rs)α

](β−γ )/α . (7)

This five-parameter profile, normalized by the scale den-
sity ρs , describes a split power law with inner logarithmic
slope d log ρ/d log r|r≪rs

= −γ and outer logarithmic slope
d log ρ/d log r|r≫rs

= −β. The transition happens near the
scale radius rs, with α specifying its sharpness. For (α,β, γ ) =
(1, 3, 1) one recovers the two-parameter Navarro–Frenk–White
(NFW) profile that characterizes CDM halos formed in dissipa-
tionless numerical simulations (Navarro et al. 1997). However,
the profile can also describe halos with even steeper central
“cusps” (γ > 1), or halos with “cores” of uniform central den-
sity (γ ∼ 0), as are usually inferred from observations of real
galaxies (de Blok 2010, and references therein; Walker et al.
2011; Donato et al. 2009). This flexibility lets us explore a wide
range of physically plausible dark matter profiles.

3.2. Estimation of Dark Matter Profile Parameters

From Equation (3), the flux of annihilation by-products
depends on the density of dark matter particles within the source,
and thus on the source’s gravitational potential. For collisionless
stellar systems like dwarf galaxies, the gravitational potential
is related fundamentally to the phase-space density of stars
f (r, u), defined such that f (r, u) d3r d3u gives the expected
number of stars lying within the phase-space volume d3r d3u
centered on (r, u). However, dwarf galaxies are sufficiently far
away that current instrumentation resolves only the projection
of their internal phase-space distributions, effectively providing
information in just three dimensions: position as projected onto
the plane perpendicular to the line of sight, and velocity along the
line of sight (from Doppler redshift). Given these limitations, it is
common to infer the gravitational potential Φ by considering its
relation to moments of the phase-space distribution: the stellar
density profile,
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Projecting along the line of sight, the mass profile relates
to observable profiles, the projected stellar density Σ(R), and
line-of-sight velocity dispersion σ (R), according to (Binney &
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We use Equation (16) to fit models for ρ(r) and βa(r) to
observed velocity dispersion and surface brightness profiles
under the following assumptions:

1. Dynamic equilibrium and spherical symmetry, both implicit
in the use of Equation (11);

2. The stars are distributed according to a Plummer (1911)
profile,
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where L is the total luminosity and Re is the projected
halflight radius;

3. The stars contribute negligibly to the gravitational potential,
such that Re is the only meaningful parameter in ν(r)
and Σ(R);

4. βa = constant;
5. The distribution of stellar velocities is not significantly

influenced by the presence of binary stars.

Real galaxies violate all of these assumptions at some level
and it is important to consider that the error distributions that
we derive for J values will not include the resulting systematic
errors. For the present work, we are concerned primarily with
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and (6) are x = −∞ and x = +∞, and dx = dℓ. The dark
matter density is a function of r =

√
b2 + x2, the distance from

the center of the dwarf, so that ρ(ℓn̂) is given by ρ(
√

b2 + x2).

3. RECONSTRUCTING THE DARK MATTER POTENTIAL
WITH STELLAR KINEMATICS

3.1. Dark Matter Density

In order to accurately quantify uncertainties in the spatial
distribution of dark matter it is necessary to use a suitably
flexible functional form for the density profile (Bonnivard
et al. 2015). Following Charbonnier et al. (2011), we adopt
the functional form introduced by Zhao (1996) to generalize the
Hernquist (1990) profile. In this spherically symmetric model,
the density of dark matter at halo-centric radius r is

ρ(r) = ρs

(r/rs)γ
[
1 + (r/rs)α

](β−γ )/α . (7)

This five-parameter profile, normalized by the scale den-
sity ρs , describes a split power law with inner logarithmic
slope d log ρ/d log r|r≪rs

= −γ and outer logarithmic slope
d log ρ/d log r|r≫rs

= −β. The transition happens near the
scale radius rs, with α specifying its sharpness. For (α,β, γ ) =
(1, 3, 1) one recovers the two-parameter Navarro–Frenk–White
(NFW) profile that characterizes CDM halos formed in dissipa-
tionless numerical simulations (Navarro et al. 1997). However,
the profile can also describe halos with even steeper central
“cusps” (γ > 1), or halos with “cores” of uniform central den-
sity (γ ∼ 0), as are usually inferred from observations of real
galaxies (de Blok 2010, and references therein; Walker et al.
2011; Donato et al. 2009). This flexibility lets us explore a wide
range of physically plausible dark matter profiles.

3.2. Estimation of Dark Matter Profile Parameters

From Equation (3), the flux of annihilation by-products
depends on the density of dark matter particles within the source,
and thus on the source’s gravitational potential. For collisionless
stellar systems like dwarf galaxies, the gravitational potential
is related fundamentally to the phase-space density of stars
f (r, u), defined such that f (r, u) d3r d3u gives the expected
number of stars lying within the phase-space volume d3r d3u
centered on (r, u). However, dwarf galaxies are sufficiently far
away that current instrumentation resolves only the projection
of their internal phase-space distributions, effectively providing
information in just three dimensions: position as projected onto
the plane perpendicular to the line of sight, and velocity along the
line of sight (from Doppler redshift). Given these limitations, it is
common to infer the gravitational potential Φ by considering its
relation to moments of the phase-space distribution: the stellar
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φ(r) (9)
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characterizes the orbital anisotropy and the enclosed mass
profile
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includes contributions from the dark matter halo.
Equation (11) has the general solution (van der Marel 1994;
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Projecting along the line of sight, the mass profile relates
to observable profiles, the projected stellar density Σ(R), and
line-of-sight velocity dispersion σ (R), according to (Binney &
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We use Equation (16) to fit models for ρ(r) and βa(r) to
observed velocity dispersion and surface brightness profiles
under the following assumptions:

1. Dynamic equilibrium and spherical symmetry, both implicit
in the use of Equation (11);

2. The stars are distributed according to a Plummer (1911)
profile,

ν(r) = 3L
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implying surface brightness profiles of the form
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where L is the total luminosity and Re is the projected
halflight radius;

3. The stars contribute negligibly to the gravitational potential,
such that Re is the only meaningful parameter in ν(r)
and Σ(R);

4. βa = constant;
5. The distribution of stellar velocities is not significantly

influenced by the presence of binary stars.

Real galaxies violate all of these assumptions at some level
and it is important to consider that the error distributions that
we derive for J values will not include the resulting systematic
errors. For the present work, we are concerned primarily with
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and (6) are x = −∞ and x = +∞, and dx = dℓ. The dark
matter density is a function of r =
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b2 + x2, the distance from

the center of the dwarf, so that ρ(ℓn̂) is given by ρ(
√

b2 + x2).

3. RECONSTRUCTING THE DARK MATTER POTENTIAL
WITH STELLAR KINEMATICS

3.1. Dark Matter Density

In order to accurately quantify uncertainties in the spatial
distribution of dark matter it is necessary to use a suitably
flexible functional form for the density profile (Bonnivard
et al. 2015). Following Charbonnier et al. (2011), we adopt
the functional form introduced by Zhao (1996) to generalize the
Hernquist (1990) profile. In this spherically symmetric model,
the density of dark matter at halo-centric radius r is

ρ(r) = ρs

(r/rs)γ
[
1 + (r/rs)α

](β−γ )/α . (7)

This five-parameter profile, normalized by the scale den-
sity ρs , describes a split power law with inner logarithmic
slope d log ρ/d log r|r≪rs

= −γ and outer logarithmic slope
d log ρ/d log r|r≫rs

= −β. The transition happens near the
scale radius rs, with α specifying its sharpness. For (α,β, γ ) =
(1, 3, 1) one recovers the two-parameter Navarro–Frenk–White
(NFW) profile that characterizes CDM halos formed in dissipa-
tionless numerical simulations (Navarro et al. 1997). However,
the profile can also describe halos with even steeper central
“cusps” (γ > 1), or halos with “cores” of uniform central den-
sity (γ ∼ 0), as are usually inferred from observations of real
galaxies (de Blok 2010, and references therein; Walker et al.
2011; Donato et al. 2009). This flexibility lets us explore a wide
range of physically plausible dark matter profiles.

3.2. Estimation of Dark Matter Profile Parameters

From Equation (3), the flux of annihilation by-products
depends on the density of dark matter particles within the source,
and thus on the source’s gravitational potential. For collisionless
stellar systems like dwarf galaxies, the gravitational potential
is related fundamentally to the phase-space density of stars
f (r, u), defined such that f (r, u) d3r d3u gives the expected
number of stars lying within the phase-space volume d3r d3u
centered on (r, u). However, dwarf galaxies are sufficiently far
away that current instrumentation resolves only the projection
of their internal phase-space distributions, effectively providing
information in just three dimensions: position as projected onto
the plane perpendicular to the line of sight, and velocity along the
line of sight (from Doppler redshift). Given these limitations, it is
common to infer the gravitational potential Φ by considering its
relation to moments of the phase-space distribution: the stellar
density profile,

ν(r) ≡
∫

f (r, u) d3u, (8)

and the stellar velocity dispersion profile,

u2(r) = u2
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θ (r) + u2
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∫
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Assuming dynamic equilibrium and spherical symmetry, these
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characterizes the orbital anisotropy and the enclosed mass
profile

M(r) = 4π

∫ r

0
s2ρ(s)ds (13)

includes contributions from the dark matter halo.
Equation (11) has the general solution (van der Marel 1994;

Mamon & Łokas 2005)
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Projecting along the line of sight, the mass profile relates
to observable profiles, the projected stellar density Σ(R), and
line-of-sight velocity dispersion σ (R), according to (Binney &
Tremaine 2008)
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∫ ∞
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We use Equation (16) to fit models for ρ(r) and βa(r) to
observed velocity dispersion and surface brightness profiles
under the following assumptions:

1. Dynamic equilibrium and spherical symmetry, both implicit
in the use of Equation (11);

2. The stars are distributed according to a Plummer (1911)
profile,

ν(r) = 3L
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implying surface brightness profiles of the form
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where L is the total luminosity and Re is the projected
halflight radius;

3. The stars contribute negligibly to the gravitational potential,
such that Re is the only meaningful parameter in ν(r)
and Σ(R);

4. βa = constant;
5. The distribution of stellar velocities is not significantly

influenced by the presence of binary stars.

Real galaxies violate all of these assumptions at some level
and it is important to consider that the error distributions that
we derive for J values will not include the resulting systematic
errors. For the present work, we are concerned primarily with
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and (6) are x = −∞ and x = +∞, and dx = dℓ. The dark
matter density is a function of r =

√
b2 + x2, the distance from

the center of the dwarf, so that ρ(ℓn̂) is given by ρ(
√

b2 + x2).

3. RECONSTRUCTING THE DARK MATTER POTENTIAL
WITH STELLAR KINEMATICS

3.1. Dark Matter Density

In order to accurately quantify uncertainties in the spatial
distribution of dark matter it is necessary to use a suitably
flexible functional form for the density profile (Bonnivard
et al. 2015). Following Charbonnier et al. (2011), we adopt
the functional form introduced by Zhao (1996) to generalize the
Hernquist (1990) profile. In this spherically symmetric model,
the density of dark matter at halo-centric radius r is

ρ(r) = ρs

(r/rs)γ
[
1 + (r/rs)α

](β−γ )/α . (7)

This five-parameter profile, normalized by the scale den-
sity ρs , describes a split power law with inner logarithmic
slope d log ρ/d log r|r≪rs

= −γ and outer logarithmic slope
d log ρ/d log r|r≫rs

= −β. The transition happens near the
scale radius rs, with α specifying its sharpness. For (α,β, γ ) =
(1, 3, 1) one recovers the two-parameter Navarro–Frenk–White
(NFW) profile that characterizes CDM halos formed in dissipa-
tionless numerical simulations (Navarro et al. 1997). However,
the profile can also describe halos with even steeper central
“cusps” (γ > 1), or halos with “cores” of uniform central den-
sity (γ ∼ 0), as are usually inferred from observations of real
galaxies (de Blok 2010, and references therein; Walker et al.
2011; Donato et al. 2009). This flexibility lets us explore a wide
range of physically plausible dark matter profiles.

3.2. Estimation of Dark Matter Profile Parameters

From Equation (3), the flux of annihilation by-products
depends on the density of dark matter particles within the source,
and thus on the source’s gravitational potential. For collisionless
stellar systems like dwarf galaxies, the gravitational potential
is related fundamentally to the phase-space density of stars
f (r, u), defined such that f (r, u) d3r d3u gives the expected
number of stars lying within the phase-space volume d3r d3u
centered on (r, u). However, dwarf galaxies are sufficiently far
away that current instrumentation resolves only the projection
of their internal phase-space distributions, effectively providing
information in just three dimensions: position as projected onto
the plane perpendicular to the line of sight, and velocity along the
line of sight (from Doppler redshift). Given these limitations, it is
common to infer the gravitational potential Φ by considering its
relation to moments of the phase-space distribution: the stellar
density profile,

ν(r) ≡
∫

f (r, u) d3u, (8)

and the stellar velocity dispersion profile,
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Assuming dynamic equilibrium and spherical symmetry, these
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characterizes the orbital anisotropy and the enclosed mass
profile
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includes contributions from the dark matter halo.
Equation (11) has the general solution (van der Marel 1994;
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Projecting along the line of sight, the mass profile relates
to observable profiles, the projected stellar density Σ(R), and
line-of-sight velocity dispersion σ (R), according to (Binney &
Tremaine 2008)
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We use Equation (16) to fit models for ρ(r) and βa(r) to
observed velocity dispersion and surface brightness profiles
under the following assumptions:

1. Dynamic equilibrium and spherical symmetry, both implicit
in the use of Equation (11);

2. The stars are distributed according to a Plummer (1911)
profile,

ν(r) = 3L
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implying surface brightness profiles of the form
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where L is the total luminosity and Re is the projected
halflight radius;

3. The stars contribute negligibly to the gravitational potential,
such that Re is the only meaningful parameter in ν(r)
and Σ(R);

4. βa = constant;
5. The distribution of stellar velocities is not significantly

influenced by the presence of binary stars.

Real galaxies violate all of these assumptions at some level
and it is important to consider that the error distributions that
we derive for J values will not include the resulting systematic
errors. For the present work, we are concerned primarily with
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ABSTRACT

Gamma-ray searches for dark matter annihilation and decay in dwarf galaxies rely on an understanding of the
dark matter density profiles of these systems. Conversely, uncertainties in these density profiles propagate into the
derived particle physics limits as systematic errors. In this paper we quantify the expected dark matter signal from
20 Milky Way dwarfs using a uniform analysis of the most recent stellar-kinematic data available. Assuming that
the observed stellar populations are equilibrium tracers of spherically symmetric gravitational potentials that are
dominated by dark matter, we find that current stellar-kinematic data can predict the amplitudes of annihilation
signals to within a factor of a few for the ultra-faint dwarfs of greatest interest. On the other hand, the expected
signal from several classical dwarfs (with high-quality observations of large numbers of member stars) can be
localized to the ∼20% level. These results are important for designing maximally sensitive searches in current and
future experiments using space and ground-based instruments.
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1. INTRODUCTION

The search for cosmological dark matter annihilation or decay
is a major effort in contemporary astrophysics. Educing the dark
matter particle physics from observations requires a detailed
understanding of the dark matter distribution in the systems
under study. A productive avenue of approach has been to
search for gamma-rays generated by dark matter annihilation
in Milky Way dwarf spheroidal galaxies (e.g., Scott et al. 2010;
Essig et al. 2010; Aleksić et al. 2011; Geringer-Sameth &
Koushiappas 2011; Ackermann et al. 2011; Geringer-Sameth
& Koushiappas 2012; Aliu et al. 2012; Ackermann et al.
2014; Geringer-Sameth et al. 2014). Such systems are nearby,
dark matter-dominated, and contain no conventional sources
of astrophysical backgrounds (e.g., cosmic ray generation and
propagation through interstellar gas). Many such dwarf galaxies
have been discovered in recent years (Willman et al. 2005;
Zucker et al. 2006a, 2006b; Walsh et al. 2007; Belokurov et al.
2007, 2008; Belokurov et al. 2009, 2010) with the prospect of
more discoveries from ongoing and future sky surveys like Pan-
Starrs (Kaiser et al. 2002), the Vista Hemisphere Survey (Ashby
et al. 2013, 2014), the Dark Energy Survey (Flaugher 2005),
and eventually the Large Synoptic Survey Telescope (Tyson
et al. 2003).

Previous studies of dwarf galaxies have begun to constrain
the physical properties of dark matter (Geringer-Sameth &
Koushiappas 2011; Ackermann et al. 2011, 2014; Geringer-
Sameth et al. 2014). The lack of any significant gamma-ray
excess lead to the exclusion of generic dark matter candidates
with annihilation cross sections on the order of the benchmark
value for a thermal relic (∼3 × 10−26 cm3 s−1) and with masses
less than a few tens of GeV. Despite current non-detections,
dwarf galaxies—and their lack of astrophysical contaminating
sources—offer the cleanest possible signature of dark matter
annihilation or decay compared with other targets. This is
especially interesting in the context of recent claims of a
Galactic center gamma-ray excess and associated dark matter

interpretation (e.g., Hooper & Goodenough 2011; Boyarsky
et al. 2011; Abazajian & Kaplinghat 2012, 2013; Abazajian et al.
2014; Daylan et al. 2014). Observations of dwarf galaxies have
the potential to either confirm or rule out such an interpretation.

The dark matter distribution within a target system is a nec-
essary ingredient for placing constraints on any particle theory
that predicts dark matter annihilation or decay. Knowledge of
the relative signal strengths among different targets as well as
the spatial distribution of the emission is required for designing
maximally sensitive searches in current and future experiments.
The overall emission rate from annihilation is described by the
“J value,” the integral along the line of sight and over an aper-
ture of the square of the dark matter density. The amplitude
of J helps to identify which dwarfs are the most promising for
searches (i.e., are the “brightest”).

Different groups have devised various methods for estimating
dark matter distributions (and uncertainties) using observations
of line-of-sight velocities of dwarf galaxy member stars. Some
authors use the kinematic data to fit for the mass and/or
concentration of dark matter density profiles that are assumed
to follow an analytic form typically used to describe low-mass
“subhalos” (virial mass ∼ 109–10 M⊙) that form around Milky-
Way-like galaxies in dissipationless cosmological simulations
based on cold dark matter (CDM; e.g., Strigari et al. 2007;
Martinez et al. 2009; Martinez 2013). Some studies make an
explicit assumption of a cored profile (Cholis & Salucci 2012;
Salucci et al. 2012), while others take a more agnostic approach,
fitting relatively flexible density profiles that are not restricted
to the form used to describe simulated halos (e.g., Charbonnier
et al. 2011).

In addition, different groups use different techniques for
propagating the uncertainties in those dark matter distributions
when incorporating gamma-ray non-detections to derive limits
on the annihilation cross section as a function of particle mass.
For example, in their joint analysis of stellar-kinematic and
gamma-ray data for several dwarfs, Ackermann et al. (2011) take
the uncertainty in J to be described by a log-normal distribution
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Fig. 1.— Projected velocity dispersion profiles for eight bright dSphs, from Magellan/MMFS and MMT/Hectochelle data. Over-plotted are
profiles calculated from isothermal, power-law, NFW and cored halos considered as prospective “universal” dSph halos (Section 5). For each type
of halo we fit only for the anisotropy and normalization. All isothermal, NFW and cored profiles above have normalization Vmax ∼ 10 − 20 km
s−1—see Table 3. All power-law profiles have normalization M300 ∼ [0.5 − 1.5] × 107M⊙.

by α and γ. Thus the parameter Vmax sets the normal-
ization of the mass profile.

The normalization can equivalently be set by specify-
ing, rather than Vmax, the enclosed mass at some par-
ticular radius. For radius x, the enclosed mass M(x)
specifies M(r0) according to

M(r0) = M(x)
2F1

[3−γ
α , 3−γ

α ; 3−γ+α
α ;−1

]

(

x
r0

)3−γ
2F1

[

3−γ
α , 3−γ

α ; 3−γ+α
α ;−

(

x
r0

)α]

.

(8)
S08 demonstrate that for most dSphs the Jeans anal-
ysis can tightly constrain M300. Here, in addition to
M300, we shall consider the masses within two alterna-
tive radii as free parameters with which to normalize the
mass profile. Specifically, we consider the mass within
the half-light radius, M(rhalf ), and the mass within the
outermost data point of the empirical velocity dispersion
profile, M(rlast).

3.4. Markov-Chain Monte Carlo Method

In order to evaluate a given halo model, we com-
pare the projected velocity dispersion profile, σp(R),
from Equation 3 to the empirical profile, σV0

(R), dis-
played in Figure 1. For a given parameter set S ≡
{− log(1 − β), log MX , log r0, α, γ}, where MX is one of
{Vmax, M(rhalf ), M300 or M(rlast)}, we adopt uniform
priors and consider the likelihood

ζ =
N
∏

i=1

1
√

2π(Var[σV0
(Ri)])

exp

[

−
1

2

(σV0
(Ri) − σp(Ri))2

Var[σV0
(Ri)]

]

,

(9)
where Var[σV0

(Ri)] is the square of the error associated
with the empirical dispersion.

Our mass models have five free parameters (four halo
parameters plus one anisotropy parameter). In order
to explore the large parameter space efficiently, we em-
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Equation (3) shows that when mBHhv2BHi ¼ mshv2si there
is no energy exchange between the two populations.
If hv2BHi ≈ hv2si≡ σ2, the time scale for stars and black
holes to reach equipartition is trelax ¼ Es=ðdEs=dtÞ,
which based on the virial theorem can be written as
tr ≈ ðN=8 lnNÞτc, where τc ¼ r=σ is the crossing time
andN is the number of particles. If the system is dominated
by black holes (as is the case here), then stars will reach
equipartition soon as the black holes establish a collisional
steady state.
For Segue 1, σ ¼ 3.7þ1.4

−1.1 km s−1, the half light radius is
29þ8

−5 pc, and the mass within half light radius is
5.8þ8.2

−3.1 × 105 [31,39]. Assuming that 10% of dark matter

is in black holes of mass mBH ¼ 30 M⊙, the ratio of
relaxation time to Hubble time is ∼0.01. Thus, mass
segregation and equipartition must have already taken
place in Segue 1 by the present epoch [The quoted
relaxation time is directly proportional to the fraction of
dark matter in black holes. If, for example, the fraction of
dark matter is 100% (1%) the ratio of relaxation time to
Hubble time is ∼0.1 (∼0.001)]. Other dwarf galaxies with
similar relaxation times are Bootes II, Segue II, Wilman 1,
Coma, andCanesVenatici II.All other knowndwarf galaxies
have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
Plummer will exhibit even more severe effects of mass
segregation [an exponential profile can also be used (see
Ref. [48]), with similar results].
We follow Brandt [28] and calculate the evolution of

radial shells by using the virial theorem and the diffusion
coefficient for weak scattering of stars off black holes (see
also Ref. [46]). The differential equation that governs the
evolution of radial mass shells as a function of time is then
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We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
Plummer will exhibit even more severe effects of mass
segregation [an exponential profile can also be used (see
Ref. [48]), with similar results].
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We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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which based on the virial theorem can be written as
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Hubble time is ∼0.1 (∼0.001)]. Other dwarf galaxies with
similar relaxation times are Bootes II, Segue II, Wilman 1,
Coma, andCanesVenatici II.All other knowndwarf galaxies
have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
Plummer will exhibit even more severe effects of mass
segregation [an exponential profile can also be used (see
Ref. [48]), with similar results].
We follow Brandt [28] and calculate the evolution of

radial shells by using the virial theorem and the diffusion
coefficient for weak scattering of stars off black holes (see
also Ref. [46]). The differential equation that governs the
evolution of radial mass shells as a function of time is then

dr
dt

¼ 4
ffiffiffi
2

p
πGfDMmBH

σ
lnΛ

"
α

Ms

ρDMr2
þ 2βr

#−1
: ð4Þ

We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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similar relaxation times are Bootes II, Segue II, Wilman 1,
Coma, andCanesVenatici II.All other knowndwarf galaxies
have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
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Ref. [48]), with similar results].
We follow Brandt [28] and calculate the evolution of

radial shells by using the virial theorem and the diffusion
coefficient for weak scattering of stars off black holes (see
also Ref. [46]). The differential equation that governs the
evolution of radial mass shells as a function of time is then

dr
dt

¼ 4
ffiffiffi
2

p
πGfDMmBH

σ
lnΛ

"
α

Ms

ρDMr2
þ 2βr

#−1
: ð4Þ

We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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where prime denotes a derivative with respect to X,
X ≡ v=

ffiffiffi
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p
σBH, σ2BH ¼ hv2BHi, lnΛ ≈ 10 is the Coulomb

logarithm, and G is the gravitational constant. The mean
change of kinetic energy of the stars Es ¼ mshvs2i=2 is
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¼
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Substituting Eq. (1) in Eq. (2) and integrating by parts we
get [47],

dEs

dt
¼

ffiffiffiffiffiffiffiffi
96π

p
G2msρBH lnΛ

½hv2siþ hv2BHi&3=2
½mBHhv2BHi −mshv2si&: ð3Þ

Equation (3) shows that when mBHhv2BHi ¼ mshv2si there
is no energy exchange between the two populations.
If hv2BHi ≈ hv2si≡ σ2, the time scale for stars and black
holes to reach equipartition is trelax ¼ Es=ðdEs=dtÞ,
which based on the virial theorem can be written as
tr ≈ ðN=8 lnNÞτc, where τc ¼ r=σ is the crossing time
andN is the number of particles. If the system is dominated
by black holes (as is the case here), then stars will reach
equipartition soon as the black holes establish a collisional
steady state.
For Segue 1, σ ¼ 3.7þ1.4

−1.1 km s−1, the half light radius is
29þ8

−5 pc, and the mass within half light radius is
5.8þ8.2

−3.1 × 105 [31,39]. Assuming that 10% of dark matter

is in black holes of mass mBH ¼ 30 M⊙, the ratio of
relaxation time to Hubble time is ∼0.01. Thus, mass
segregation and equipartition must have already taken
place in Segue 1 by the present epoch [The quoted
relaxation time is directly proportional to the fraction of
dark matter in black holes. If, for example, the fraction of
dark matter is 100% (1%) the ratio of relaxation time to
Hubble time is ∼0.1 (∼0.001)]. Other dwarf galaxies with
similar relaxation times are Bootes II, Segue II, Wilman 1,
Coma, andCanesVenatici II.All other knowndwarf galaxies
have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
Plummer will exhibit even more severe effects of mass
segregation [an exponential profile can also be used (see
Ref. [48]), with similar results].
We follow Brandt [28] and calculate the evolution of

radial shells by using the virial theorem and the diffusion
coefficient for weak scattering of stars off black holes (see
also Ref. [46]). The differential equation that governs the
evolution of radial mass shells as a function of time is then

dr
dt

¼ 4
ffiffiffi
2

p
πGfDMmBH

σ
lnΛ

"
α
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ρDMr2
þ 2βr
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: ð4Þ

We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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Fig. 1.— Dynamical heating of a 6000 M⊙ star cluster by 30 M⊙
MACHOs at three fiducial densities, neglecting mass loss from the
cluster. The cluster expands slowly until its mean density equals
that of the MACHOs, and then expands as rh ∼

√
t.

lution of the half-light radius,

drh
dt

=
4
√
2πGfDMma

σ
lnΛ

(

α
M∗

ρr2h
+ 2βrh

)−1

. (7)

As long as the star cluster is dark-matter dominated,
Equation (7) is independent of the dark matter density.
A compact stellar system will expand slowly until it be-
comes dominated by its dark matter content, and then
expand with rh ∼

√
t. Figure 1 demonstrates this behav-

ior for a 6000 M⊙ cluster with an initial half-light radius
of 1 pc for 30 M⊙ MACHOs at three fiducial dark matter
densities, taking α = 0.4 and β = 10.
Motivated by Equation (7), I define two characteristic

lifetimes for a stellar system. The first is the time for it
to puff up to its observed size from the ∼2 pc core radius
of a typical Galactic star cluster (Kharchenko et al. 2005;
Harris 1996, 2010 edition). The second is the timescale to
double in area (increase by a factor of

√
2 in linear size).

In the limit of a dark-matter dominated system, these
timescales are equal to each other, and to the timescale
for the cluster to gain energy equal to its current kinetic
energy.

3. CONSTRAINTS FROM THE ULTRA-FAINT
DWARFS

I now combine Equation (7) with the observed survival
of compact ultra-faint dwarf galaxies and of the star clus-
ter in the core of Eridanus II to constrain MACHO dark
matter. As described in the previous section, I define two
characteristic lifetimes: (1) the time for the cluster to ex-
pand to its current size from the ∼2 pc core of a typical
Galactic cluster; and (2) the time to double its current
area. By requiring these times, derived using Equation
(7), to be longer than the cluster’s age, I derive corre-
sponding constraints on the abundance of MACHO dark
matter.

3.1. The Cluster in Eridanus II

The star cluster in Eridanus II is believed to be at
least ∼3 Gyr old, and could be as old as ∼12 Gyr
(Crnojević et al. 2016). At an age of 3 Gyr, the V -
band mass-to-light ratio for a metal-poor stellar system is

∼1M⊙/L⊙, while this ratio is ∼3M⊙/L⊙ for an old sys-
tem (Maraston 2005). The cluster’s observedMV = −3.5
thus implies a stellar mass of ∼2000 M⊙ at an age of
3 Gyr, or a mass of ∼6000 M⊙ at an age of 12 Gyr. The
system has an observed half-light radius rh = 13 pc. I
assume the system to have resided within the core of the
dark matter halo for its entire life, and derive MACHO
limits by requiring the timescales for dynamical heating
to be longer than the cluster’s age.
Figure 2 shows the constraints for a range of plausi-

ble dark matter halo properties, with three-dimensional
velocity dispersions of 5–10 km s−1 and dark matter den-
sities of 0.02–1 M⊙ pc−3. These values span the range
of parameters characteristic of ultra-faint dwarf galaxies
(Simon & Geha 2007; McConnachie 2012 and references
therein). At an age of 3 Gyr (left panel), MACHOs
!15 M⊙ are excluded from making up all of the dark
matter unless the Eri II cluster was initially compact and
remains embedded in a low-density, high-dispersion halo.
In this case, a cluster of the observed size is a transient
phenomenon; similar objects should be rarer than com-
pact low-mass clusters. If the cluster has spent ∼12 Gyr
near the center of its halo (right panel), the constraints
strengthen.
The preceding discussion assumed a roughly constant

dark matter density profile (a core larger than the clus-
ter). Assuming a cuspy dark matter profile with the clus-
ter at the dynamical center would strengthen the con-
clusions. Such an assumption would make the cluster
dominated by dark matter at a smaller half-light radius;
it would quickly begin to evolve with rh ∼

√
t inde-

pendently of dark matter density (Equation (7)). Fur-
ther, the velocity dispersion of the dark matter parti-
cles is expected to fall toward the center of an NFW
halo (Ferrer & Hunter 2013). Lower velocity dispersions
would make MACHOs even more effective at dynamical
heating, improving constraints on their abundance. If,
on the other hand, the cluster were slightly offset from
the dynamical center of a strong dark matter cusp, it
would be tidally shredded in a dynamical time.

3.2. Constraints from Other Ultra-Faint Dwarfs

The entire stellar population of a dwarf galaxy will
also be dynamically heated by MACHOs. Many com-
pact ultra-faint dwarf galaxies are now known, with stel-
lar masses !3000 M⊙ (assuming a mass-to-light ratio
M/LV = 3 M⊙/L⊙,V ), half-light radii !30 pc, and cen-
tral densities ∼1M⊙ pc−3. Table 1 lists some basic prop-
erties of ten compact ultra-faint dwarfs (plus the star
cluster in Eri II); all but three were discovered since 2015.
Where measured, the ages of the stars are consistent with
∼10 Gyr (Bechtol et al. 2015; Laevens et al. 2015). The
mean densities listed are vulnerable to different defini-
tions of the half-light or half-mass radius, and should be
treated as uncertain to at least a factor of ∼2. The com-
pact ultra-faint dwarfs constrain MACHO dark matter
in the same way as the star cluster in Eri II: I use the
same two heating timescales and require one or the other
to be longer than 10 Gyr.
Figure 3 shows the limits on MACHO dark matter

implied by a fiducial compact ultra-faint dwarf, with
rh = 30 pc, M∗ = 3000 M⊙, and a central dark matter
density ρ = 1 M⊙ pc−3, for three-dimensional velocity

hΔEis ¼ vshΔvs;∥iþ
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vs

×
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where prime denotes a derivative with respect to X,
X ≡ v=

ffiffiffi
2

p
σBH, σ2BH ¼ hv2BHi, lnΛ ≈ 10 is the Coulomb

logarithm, and G is the gravitational constant. The mean
change of kinetic energy of the stars Es ¼ mshvs2i=2 is

dEs

dt
¼

ffiffiffi
2

π

r
1

σ3s

Z
∞

0
mshΔEisv2se−v

2
s=2σ2s dvs: ð2Þ

Substituting Eq. (1) in Eq. (2) and integrating by parts we
get [47],

dEs

dt
¼

ffiffiffiffiffiffiffiffi
96π

p
G2msρBH lnΛ

½hv2siþ hv2BHi&3=2
½mBHhv2BHi −mshv2si&: ð3Þ

Equation (3) shows that when mBHhv2BHi ¼ mshv2si there
is no energy exchange between the two populations.
If hv2BHi ≈ hv2si≡ σ2, the time scale for stars and black
holes to reach equipartition is trelax ¼ Es=ðdEs=dtÞ,
which based on the virial theorem can be written as
tr ≈ ðN=8 lnNÞτc, where τc ¼ r=σ is the crossing time
andN is the number of particles. If the system is dominated
by black holes (as is the case here), then stars will reach
equipartition soon as the black holes establish a collisional
steady state.
For Segue 1, σ ¼ 3.7þ1.4

−1.1 km s−1, the half light radius is
29þ8

−5 pc, and the mass within half light radius is
5.8þ8.2

−3.1 × 105 [31,39]. Assuming that 10% of dark matter

is in black holes of mass mBH ¼ 30 M⊙, the ratio of
relaxation time to Hubble time is ∼0.01. Thus, mass
segregation and equipartition must have already taken
place in Segue 1 by the present epoch [The quoted
relaxation time is directly proportional to the fraction of
dark matter in black holes. If, for example, the fraction of
dark matter is 100% (1%) the ratio of relaxation time to
Hubble time is ∼0.1 (∼0.001)]. Other dwarf galaxies with
similar relaxation times are Bootes II, Segue II, Wilman 1,
Coma, andCanesVenatici II.All other knowndwarf galaxies
have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
Plummer will exhibit even more severe effects of mass
segregation [an exponential profile can also be used (see
Ref. [48]), with similar results].
We follow Brandt [28] and calculate the evolution of

radial shells by using the virial theorem and the diffusion
coefficient for weak scattering of stars off black holes (see
also Ref. [46]). The differential equation that governs the
evolution of radial mass shells as a function of time is then

dr
dt

¼ 4
ffiffiffi
2

p
πGfDMmBH

σ
lnΛ

"
α

Ms

ρDMr2
þ 2βr

#−1
: ð4Þ

We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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Fig. 1.— Dynamical heating of a 6000 M⊙ star cluster by 30 M⊙
MACHOs at three fiducial densities, neglecting mass loss from the
cluster. The cluster expands slowly until its mean density equals
that of the MACHOs, and then expands as rh ∼

√
t.

lution of the half-light radius,

drh
dt

=
4
√
2πGfDMma

σ
lnΛ

(

α
M∗

ρr2h
+ 2βrh

)−1

. (7)

As long as the star cluster is dark-matter dominated,
Equation (7) is independent of the dark matter density.
A compact stellar system will expand slowly until it be-
comes dominated by its dark matter content, and then
expand with rh ∼

√
t. Figure 1 demonstrates this behav-

ior for a 6000 M⊙ cluster with an initial half-light radius
of 1 pc for 30 M⊙ MACHOs at three fiducial dark matter
densities, taking α = 0.4 and β = 10.
Motivated by Equation (7), I define two characteristic

lifetimes for a stellar system. The first is the time for it
to puff up to its observed size from the ∼2 pc core radius
of a typical Galactic star cluster (Kharchenko et al. 2005;
Harris 1996, 2010 edition). The second is the timescale to
double in area (increase by a factor of

√
2 in linear size).

In the limit of a dark-matter dominated system, these
timescales are equal to each other, and to the timescale
for the cluster to gain energy equal to its current kinetic
energy.

3. CONSTRAINTS FROM THE ULTRA-FAINT
DWARFS

I now combine Equation (7) with the observed survival
of compact ultra-faint dwarf galaxies and of the star clus-
ter in the core of Eridanus II to constrain MACHO dark
matter. As described in the previous section, I define two
characteristic lifetimes: (1) the time for the cluster to ex-
pand to its current size from the ∼2 pc core of a typical
Galactic cluster; and (2) the time to double its current
area. By requiring these times, derived using Equation
(7), to be longer than the cluster’s age, I derive corre-
sponding constraints on the abundance of MACHO dark
matter.

3.1. The Cluster in Eridanus II

The star cluster in Eridanus II is believed to be at
least ∼3 Gyr old, and could be as old as ∼12 Gyr
(Crnojević et al. 2016). At an age of 3 Gyr, the V -
band mass-to-light ratio for a metal-poor stellar system is

∼1M⊙/L⊙, while this ratio is ∼3M⊙/L⊙ for an old sys-
tem (Maraston 2005). The cluster’s observedMV = −3.5
thus implies a stellar mass of ∼2000 M⊙ at an age of
3 Gyr, or a mass of ∼6000 M⊙ at an age of 12 Gyr. The
system has an observed half-light radius rh = 13 pc. I
assume the system to have resided within the core of the
dark matter halo for its entire life, and derive MACHO
limits by requiring the timescales for dynamical heating
to be longer than the cluster’s age.
Figure 2 shows the constraints for a range of plausi-

ble dark matter halo properties, with three-dimensional
velocity dispersions of 5–10 km s−1 and dark matter den-
sities of 0.02–1 M⊙ pc−3. These values span the range
of parameters characteristic of ultra-faint dwarf galaxies
(Simon & Geha 2007; McConnachie 2012 and references
therein). At an age of 3 Gyr (left panel), MACHOs
!15 M⊙ are excluded from making up all of the dark
matter unless the Eri II cluster was initially compact and
remains embedded in a low-density, high-dispersion halo.
In this case, a cluster of the observed size is a transient
phenomenon; similar objects should be rarer than com-
pact low-mass clusters. If the cluster has spent ∼12 Gyr
near the center of its halo (right panel), the constraints
strengthen.
The preceding discussion assumed a roughly constant

dark matter density profile (a core larger than the clus-
ter). Assuming a cuspy dark matter profile with the clus-
ter at the dynamical center would strengthen the con-
clusions. Such an assumption would make the cluster
dominated by dark matter at a smaller half-light radius;
it would quickly begin to evolve with rh ∼

√
t inde-

pendently of dark matter density (Equation (7)). Fur-
ther, the velocity dispersion of the dark matter parti-
cles is expected to fall toward the center of an NFW
halo (Ferrer & Hunter 2013). Lower velocity dispersions
would make MACHOs even more effective at dynamical
heating, improving constraints on their abundance. If,
on the other hand, the cluster were slightly offset from
the dynamical center of a strong dark matter cusp, it
would be tidally shredded in a dynamical time.

3.2. Constraints from Other Ultra-Faint Dwarfs

The entire stellar population of a dwarf galaxy will
also be dynamically heated by MACHOs. Many com-
pact ultra-faint dwarf galaxies are now known, with stel-
lar masses !3000 M⊙ (assuming a mass-to-light ratio
M/LV = 3 M⊙/L⊙,V ), half-light radii !30 pc, and cen-
tral densities ∼1M⊙ pc−3. Table 1 lists some basic prop-
erties of ten compact ultra-faint dwarfs (plus the star
cluster in Eri II); all but three were discovered since 2015.
Where measured, the ages of the stars are consistent with
∼10 Gyr (Bechtol et al. 2015; Laevens et al. 2015). The
mean densities listed are vulnerable to different defini-
tions of the half-light or half-mass radius, and should be
treated as uncertain to at least a factor of ∼2. The com-
pact ultra-faint dwarfs constrain MACHO dark matter
in the same way as the star cluster in Eri II: I use the
same two heating timescales and require one or the other
to be longer than 10 Gyr.
Figure 3 shows the limits on MACHO dark matter

implied by a fiducial compact ultra-faint dwarf, with
rh = 30 pc, M∗ = 3000 M⊙, and a central dark matter
density ρ = 1 M⊙ pc−3, for three-dimensional velocity

Velocity dispersion unknown 
Dark matter distribution unknown
Use 1/2-light radius of the central cluster only  

Eridanus II

hΔEis ¼ vshΔvs;∥iþ
1

2
hðΔvs;∥Þ2iþ

1

2
hðΔvs;⊥Þ2i

¼ 4πG2mBHρBH lnΛ
vs

×
!
−

ms

mBH
erfðXÞ þ

"
1þ ms

mBH

#
Xerf 0ðXÞ

$
; ð1Þ

where prime denotes a derivative with respect to X,
X ≡ v=

ffiffiffi
2

p
σBH, σ2BH ¼ hv2BHi, lnΛ ≈ 10 is the Coulomb

logarithm, and G is the gravitational constant. The mean
change of kinetic energy of the stars Es ¼ mshvs2i=2 is

dEs

dt
¼

ffiffiffi
2

π

r
1

σ3s

Z
∞

0
mshΔEisv2se−v

2
s=2σ2s dvs: ð2Þ

Substituting Eq. (1) in Eq. (2) and integrating by parts we
get [47],

dEs

dt
¼

ffiffiffiffiffiffiffiffi
96π

p
G2msρBH lnΛ

½hv2siþ hv2BHi&3=2
½mBHhv2BHi −mshv2si&: ð3Þ

Equation (3) shows that when mBHhv2BHi ¼ mshv2si there
is no energy exchange between the two populations.
If hv2BHi ≈ hv2si≡ σ2, the time scale for stars and black
holes to reach equipartition is trelax ¼ Es=ðdEs=dtÞ,
which based on the virial theorem can be written as
tr ≈ ðN=8 lnNÞτc, where τc ¼ r=σ is the crossing time
andN is the number of particles. If the system is dominated
by black holes (as is the case here), then stars will reach
equipartition soon as the black holes establish a collisional
steady state.
For Segue 1, σ ¼ 3.7þ1.4

−1.1 km s−1, the half light radius is
29þ8

−5 pc, and the mass within half light radius is
5.8þ8.2

−3.1 × 105 [31,39]. Assuming that 10% of dark matter

is in black holes of mass mBH ¼ 30 M⊙, the ratio of
relaxation time to Hubble time is ∼0.01. Thus, mass
segregation and equipartition must have already taken
place in Segue 1 by the present epoch [The quoted
relaxation time is directly proportional to the fraction of
dark matter in black holes. If, for example, the fraction of
dark matter is 100% (1%) the ratio of relaxation time to
Hubble time is ∼0.1 (∼0.001)]. Other dwarf galaxies with
similar relaxation times are Bootes II, Segue II, Wilman 1,
Coma, andCanesVenatici II.All other knowndwarf galaxies
have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
Plummer will exhibit even more severe effects of mass
segregation [an exponential profile can also be used (see
Ref. [48]), with similar results].
We follow Brandt [28] and calculate the evolution of

radial shells by using the virial theorem and the diffusion
coefficient for weak scattering of stars off black holes (see
also Ref. [46]). The differential equation that governs the
evolution of radial mass shells as a function of time is then

dr
dt

¼ 4
ffiffiffi
2

p
πGfDMmBH

σ
lnΛ

"
α

Ms

ρDMr2
þ 2βr

#−1
: ð4Þ

We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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ABSTRACT

We present the results of a comprehensive Keck/DEIMOS spectroscopic survey of the ultra-faint Milky Way
satellite galaxy Segue 1. We have obtained velocity measurements for 98.2% of the stars within 67 pc (10′, or 2.3
half-light radii) of the center of Segue 1 that have colors and magnitudes consistent with membership, down to a
magnitude limit of r = 21.7. Based on photometric, kinematic, and metallicity information, we identify 71 stars
as probable Segue 1 members, including some as far out as 87 pc. After correcting for the influence of binary stars
using repeated velocity measurements, we determine a velocity dispersion of 3.7+1.4

−1.1 km s−1. The mass within the
half-light radius is 5.8+8.2

−3.1 ×105 M⊙. The stellar kinematics of Segue 1 require very high mass-to-light ratios unless
the system is far from dynamical equilibrium, even if the period distribution of unresolved binary stars is skewed
toward implausibly short periods. With a total luminosity less than that of a single bright red giant and a V-band
mass-to-light ratio of 3400 M⊙/L⊙, Segue 1 is the darkest galaxy currently known. We critically re-examine recent
claims that Segue 1 is a tidally disrupting star cluster and that kinematic samples are contaminated by the Sagittarius
stream. The extremely low metallicities ([Fe/H] < −3) of two Segue 1 stars and the large metallicity spread among
the members demonstrate conclusively that Segue 1 is a dwarf galaxy, and we find no evidence in favor of tidal
effects. We also show that contamination by the Sagittarius stream has been overestimated. Segue 1 has the highest
estimated dark matter density of any known galaxy and will therefore be a prime testing ground for dark matter
physics and galaxy formation on small scales.

Key words: dark matter – galaxies: dwarf – galaxies: individual (Segue 1) – galaxies: kinematics and dynamics –
Local Group

Online-only material: color figures, machine-readable table

1. INTRODUCTION

The Sloan Digital Sky Survey (SDSS) has been tremendously
successful in revealing new Milky Way dwarf galaxies over the
past five years (e.g., Willman et al. 2005; Zucker et al. 2006;
Belokurov et al. 2007a, 2010; Walsh et al. 2007). However,
its limited depth and sky coverage, along with the difficulty of
obtaining spectroscopic follow-up observations, still leave us
with an incomplete understanding of the Milky Way’s satellite
population. In particular, key parameters such as the luminosity
function, mass function, radial distribution, and total number of
satellites depend extremely sensitively on the properties of the
few least luminous dwarfs (e.g., Tollerud et al. 2008), which are
not yet well determined. Since the least luminous dwarfs are
the closest and densest known dark matter halos to the Milky
Way, these same objects represent critical targets for indirect
dark matter detection experiments (e.g., Baltz et al. 2000; Evans
et al. 2004; Colafrancesco et al. 2007; Strigari et al. 2008b;
Kuhlen et al. 2008; Bringmann et al. 2009; Pieri et al. 2009;

∗ The data presented herein were obtained at the W. M. Keck Observatory,
which is operated as a scientific partnership among the California Institute of
Technology, the University of California, and NASA. The Observatory was
made possible by the generous financial support of the W. M. Keck Foundation.
8 Hubble Fellow

Martinez et al. 2009) and for placing limits on the phase-space
density of dark matter particles (e.g., Hogan & Dalcanton 2000;
Dalcanton & Hogan 2001; Kaplinghat 2005; Simon & Geha
2007; Strigari et al. 2008b; Geha et al. 2009). However, as the
closest known satellites to the Milky Way, they are also the most
susceptible to tidal forces and other observational systematics.

Because of the extreme lack of bright stars in these systems,
most of the faintest dwarfs such as Willman 1 (Willman et al.
2005), Boötes II (Walsh et al. 2007), Segue 1 (Belokurov
et al. 2007a), and Segue 2 (Belokurov et al. 2009) remain
relatively poorly characterized by observations; for example, the
dynamical state of Willman 1 has still has not been established
(Martin et al. 2007; Willman et al. 2010), and the velocity
dispersion of Boo II is uncertain at the factor of ∼5 level (Koch
et al. 2009). Similarly, although Geha et al. (2009, hereafter
G09) demonstrated that the kinematics of stars in Segue 1
clearly indicate that it is a dark matter-dominated object, other
observations have suggested the possibility of tidal debris in the
vicinity of Segue 1, as well as potential contamination from the
Sagittarius stream (Niederste-Ostholt et al. 2009).

More generally, the issues of tidal disruption (e.g., Peñarrubia
et al. 2008) and binary stars (McConnachie & Côté 2010) are
the last remaining major questions to be settled regarding the
nature of the faintest dwarfs. These objects promise clues to the

1
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extreme limits of galaxy formation (Gilmore et al. 2007; Strigari
et al. 2008a) and perhaps to the formation of the first galaxies
in the early universe (e.g., Bovill & Ricotti 2009), as well
as offering insights into dark matter physics. However, these
applications hinge on the assumption that the mass distribution
of each system is accurately known. Current mass estimates
assume dynamical equilibrium and that the observed kinematics
are not being affected by Galactic tides or binary stars, but tests
of those assumptions are obviously required in order to confirm
that the dwarfs are bound, equilibrium systems. If instead the
observed velocity dispersions of Segue 1, Willman 1, and others
are being inflated either by the tidal influence of the Milky Way
or the presence of binary stars in the kinematic samples, then
they are unlikely to be useful probes of the behavior of dark
matter on small scales.

Correcting velocity dispersions for binaries, which are in-
evitably present in any stellar system, is relatively straightfor-
ward (Minor et al. 2010). The only observational requirement is
that a significant subset of the sample have at least two velocity
measurements with a separation of order 1 yr. Tidal effects, un-
fortunately, are more difficult to nail down. The only unambigu-
ous signature of tidal interactions is the presence of tidal tails
(e.g., Toomre & Toomre 1972). Detecting such features in the
ultra-faint dwarfs is extremely challenging: the galaxies them-
selves have central surface brightnesses of 26–28 mag arcsec−2

(Martin et al. 2008), so any tidal debris would be at least several
magnitudes fainter and likely below the SDSS detection limit of
∼30 mag arcsec−2. Deeper, wide-field photometric surveys of
the ultra-faint dwarfs can reach surface brightnesses as low as
32.5 mag arcsec−2 (Sand et al. 2009, 2010; Muñoz et al. 2010;
de Jong et al. 2010), but such observations are not yet available
for most of the dwarfs.

In principle, spectroscopic studies can pinpoint the stars as-
sociated with an object and probe debris at lower surface den-
sities than is possible photometrically. Spectroscopic surveys
also provide the only means of identifying tidal debris that is
oriented along the line of sight to an object (Łokas et al. 2008;
Klimentowski et al. 2009). However, the currently available
spectroscopic samples of less than 25 stars in the faintest dwarfs
are not sufficient to determine to what extent tides may be af-
fecting the kinematics. Much larger spectroscopic data sets are
required to test for tidal effects.

In this paper, we present a nearly complete spectroscopic
survey of Segue 1 that is aimed at obtaining repeated velocity
measurements of known members and searching for stars
that have been tidally stripped from the system. We describe
our modeling of the binary star population and the mass
distribution in more detail in a companion paper (Martinez
et al. 2010, hereafter Paper II), and a separate study examines
the implications of our new mass measurements for indirect
detection of dark matter (Essig et al. 2010). In Section 2,
we describe the survey and the data reduction. We identify
Segue 1 member stars in Section 3 and then analyze their
metallicities and velocities in Section 4. In Section 5, we present
our derivation of the intrinsic velocity dispersion of Segue 1
after correcting for the presence of binary stars in the sample
(see Paper II for more details), and in Section 6 we describe our
detection of an unrelated tidal stream in the same part of the
sky. We consider the implications of this data set for proposals
that the kinematics of Segue 1 are affected by contamination and
tidal disruption in Section 7. We discuss the utility of Segue 1 for
placing constraints on the properties of dark matter in Section 8.
In Section 9, we summarize our findings and conclude.

Table 1
Summary of Properties of Segue 1

Row Quantity Value

(1) R.A. (J2000) (h m s) 10:07:03.2 ± 1.s7
(2) Decl. (J2000) (◦ ′ ′′) +16:04:25 ± 15′′

(3) Distance (kpc) 23 ± 2
(4) MV −1.5+0.6

−0.8

(5) LV (L⊙) 340
(6) ϵ 0.48+0.10

−0.13

(7) µV,0 (mag arcsec−2) 27.6+1.0
−0.7

(8) reff (pc) 29+8
−5

(9) Vhel (km s−1) 208.5 ± 0.9

(10) VGSR (km s−1) 113.5 ± 0.9

(11) σ (km s−1) 3.7+1.4
−1.1

(12) Mass (M⊙) 5.8+8.2
−3.1 × 105

(13) M/LV (M⊙/L⊙) 3400
(14) Mean [Fe/H] −2.5

Notes. Rows (1)–(2) and (4)–(8) are taken from the SDSS
photometric analysis of Martin et al. (2008) and row (3)
from Belokurov et al. (2007a). Values in rows (9)–(14)
are derived in this paper.

2. EXPERIMENTAL DESIGN, OBSERVATIONS,
AND DATA REDUCTION

2.1. A Survey for Tidal Debris

As a complement to ongoing deep, wide-field photometric
surveys of the ultra-faint dwarfs (e.g., Muñoz et al. 2010), we
embarked upon a spectroscopic search for evidence of tidal
stripping or extratidal stars. The ideal target for such a search
would be a galaxy that (1) is nearby, to maximize the tidal
forces it is currently experiencing,9 (2) is moving at a high
velocity relative to the Milky Way, to minimize the degree of
contamination by foreground stars, and (3) has a small angular
size, to minimize the area that the survey needs to cover. Out
of all the known Milky Way dwarf galaxies, the clear choice
according to these criteria is Segue 1. At a distance of 23 kpc
from the Sun (28 kpc from the Galactic center), Segue 1 is the
closest dwarf galaxy other than Sagittarius, which of course
is the prototype for a dwarf undergoing tidal disruption. Its
heliocentric velocity of 207 km s−1 (the largest of the Milky
Way satellites within 200 kpc) and relatively small velocity
dispersion give Segue 1 the lowest expected surface density of
Milky Way foreground stars within 3σ of its mean velocity
(according to the Besançon model; Robin et al. 2003). Finally,
if Segue 1 is not surrounded by a massive dark matter halo—and
it can only host visible tidal features if no extended halo is
present—its instantaneous Jacobi (tidal) radius based on the
stellar mass estimated by Martin et al. (2008) is ∼30 pc, or
4.′5, which is an observationally feasible area to search. This
calculation conservatively assumes that Segue 1 has never been
closer to the Milky Way than it is now; if its orbital pericenter
is less than 28 kpc, its baryon-only tidal radius would be even
smaller. The properties of Segue 1 are summarized in Table 1.

2.2. Target Selection

To select targets for the survey, we focused on the area within
∼15′ (100 pc) of the center of Segue 1 as determined by Martin

9 If the object is too close to the pericenter of its orbit, though, then the extent
of its tails (if they exist) would be minimized.
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ABSTRACT

Gamma-ray searches for dark matter annihilation and decay in dwarf galaxies rely on an understanding of the
dark matter density profiles of these systems. Conversely, uncertainties in these density profiles propagate into the
derived particle physics limits as systematic errors. In this paper we quantify the expected dark matter signal from
20 Milky Way dwarfs using a uniform analysis of the most recent stellar-kinematic data available. Assuming that
the observed stellar populations are equilibrium tracers of spherically symmetric gravitational potentials that are
dominated by dark matter, we find that current stellar-kinematic data can predict the amplitudes of annihilation
signals to within a factor of a few for the ultra-faint dwarfs of greatest interest. On the other hand, the expected
signal from several classical dwarfs (with high-quality observations of large numbers of member stars) can be
localized to the ∼20% level. These results are important for designing maximally sensitive searches in current and
future experiments using space and ground-based instruments.
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1. INTRODUCTION

The search for cosmological dark matter annihilation or decay
is a major effort in contemporary astrophysics. Educing the dark
matter particle physics from observations requires a detailed
understanding of the dark matter distribution in the systems
under study. A productive avenue of approach has been to
search for gamma-rays generated by dark matter annihilation
in Milky Way dwarf spheroidal galaxies (e.g., Scott et al. 2010;
Essig et al. 2010; Aleksić et al. 2011; Geringer-Sameth &
Koushiappas 2011; Ackermann et al. 2011; Geringer-Sameth
& Koushiappas 2012; Aliu et al. 2012; Ackermann et al.
2014; Geringer-Sameth et al. 2014). Such systems are nearby,
dark matter-dominated, and contain no conventional sources
of astrophysical backgrounds (e.g., cosmic ray generation and
propagation through interstellar gas). Many such dwarf galaxies
have been discovered in recent years (Willman et al. 2005;
Zucker et al. 2006a, 2006b; Walsh et al. 2007; Belokurov et al.
2007, 2008; Belokurov et al. 2009, 2010) with the prospect of
more discoveries from ongoing and future sky surveys like Pan-
Starrs (Kaiser et al. 2002), the Vista Hemisphere Survey (Ashby
et al. 2013, 2014), the Dark Energy Survey (Flaugher 2005),
and eventually the Large Synoptic Survey Telescope (Tyson
et al. 2003).

Previous studies of dwarf galaxies have begun to constrain
the physical properties of dark matter (Geringer-Sameth &
Koushiappas 2011; Ackermann et al. 2011, 2014; Geringer-
Sameth et al. 2014). The lack of any significant gamma-ray
excess lead to the exclusion of generic dark matter candidates
with annihilation cross sections on the order of the benchmark
value for a thermal relic (∼3 × 10−26 cm3 s−1) and with masses
less than a few tens of GeV. Despite current non-detections,
dwarf galaxies—and their lack of astrophysical contaminating
sources—offer the cleanest possible signature of dark matter
annihilation or decay compared with other targets. This is
especially interesting in the context of recent claims of a
Galactic center gamma-ray excess and associated dark matter

interpretation (e.g., Hooper & Goodenough 2011; Boyarsky
et al. 2011; Abazajian & Kaplinghat 2012, 2013; Abazajian et al.
2014; Daylan et al. 2014). Observations of dwarf galaxies have
the potential to either confirm or rule out such an interpretation.

The dark matter distribution within a target system is a nec-
essary ingredient for placing constraints on any particle theory
that predicts dark matter annihilation or decay. Knowledge of
the relative signal strengths among different targets as well as
the spatial distribution of the emission is required for designing
maximally sensitive searches in current and future experiments.
The overall emission rate from annihilation is described by the
“J value,” the integral along the line of sight and over an aper-
ture of the square of the dark matter density. The amplitude
of J helps to identify which dwarfs are the most promising for
searches (i.e., are the “brightest”).

Different groups have devised various methods for estimating
dark matter distributions (and uncertainties) using observations
of line-of-sight velocities of dwarf galaxy member stars. Some
authors use the kinematic data to fit for the mass and/or
concentration of dark matter density profiles that are assumed
to follow an analytic form typically used to describe low-mass
“subhalos” (virial mass ∼ 109–10 M⊙) that form around Milky-
Way-like galaxies in dissipationless cosmological simulations
based on cold dark matter (CDM; e.g., Strigari et al. 2007;
Martinez et al. 2009; Martinez 2013). Some studies make an
explicit assumption of a cored profile (Cholis & Salucci 2012;
Salucci et al. 2012), while others take a more agnostic approach,
fitting relatively flexible density profiles that are not restricted
to the form used to describe simulated halos (e.g., Charbonnier
et al. 2011).

In addition, different groups use different techniques for
propagating the uncertainties in those dark matter distributions
when incorporating gamma-ray non-detections to derive limits
on the annihilation cross section as a function of particle mass.
For example, in their joint analysis of stellar-kinematic and
gamma-ray data for several dwarfs, Ackermann et al. (2011) take
the uncertainty in J to be described by a log-normal distribution

1
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hΔEis ¼ vshΔvs;∥iþ
1

2
hðΔvs;∥Þ2iþ

1

2
hðΔvs;⊥Þ2i

¼ 4πG2mBHρBH lnΛ
vs

×
!
−

ms

mBH
erfðXÞ þ

"
1þ ms

mBH

#
Xerf 0ðXÞ

$
; ð1Þ

where prime denotes a derivative with respect to X,
X ≡ v=

ffiffiffi
2

p
σBH, σ2BH ¼ hv2BHi, lnΛ ≈ 10 is the Coulomb

logarithm, and G is the gravitational constant. The mean
change of kinetic energy of the stars Es ¼ mshvs2i=2 is

dEs

dt
¼

ffiffiffi
2

π

r
1

σ3s

Z
∞

0
mshΔEisv2se−v

2
s=2σ2s dvs: ð2Þ

Substituting Eq. (1) in Eq. (2) and integrating by parts we
get [47],

dEs

dt
¼

ffiffiffiffiffiffiffiffi
96π

p
G2msρBH lnΛ

½hv2siþ hv2BHi&3=2
½mBHhv2BHi −mshv2si&: ð3Þ

Equation (3) shows that when mBHhv2BHi ¼ mshv2si there
is no energy exchange between the two populations.
If hv2BHi ≈ hv2si≡ σ2, the time scale for stars and black
holes to reach equipartition is trelax ¼ Es=ðdEs=dtÞ,
which based on the virial theorem can be written as
tr ≈ ðN=8 lnNÞτc, where τc ¼ r=σ is the crossing time
andN is the number of particles. If the system is dominated
by black holes (as is the case here), then stars will reach
equipartition soon as the black holes establish a collisional
steady state.
For Segue 1, σ ¼ 3.7þ1.4

−1.1 km s−1, the half light radius is
29þ8

−5 pc, and the mass within half light radius is
5.8þ8.2

−3.1 × 105 [31,39]. Assuming that 10% of dark matter

is in black holes of mass mBH ¼ 30 M⊙, the ratio of
relaxation time to Hubble time is ∼0.01. Thus, mass
segregation and equipartition must have already taken
place in Segue 1 by the present epoch [The quoted
relaxation time is directly proportional to the fraction of
dark matter in black holes. If, for example, the fraction of
dark matter is 100% (1%) the ratio of relaxation time to
Hubble time is ∼0.1 (∼0.001)]. Other dwarf galaxies with
similar relaxation times are Bootes II, Segue II, Wilman 1,
Coma, andCanesVenatici II.All other knowndwarf galaxies
have relaxation times that are at least a factor of 10 higher.
We proceed by assuming that the initial distribution of

stars is described by a Plummer profile. This is justified
for two reasons: first, Plummer profiles are known to be
acceptable fits to the present-day distribution of stars in
dwarf galaxies, and second, a Plummer profile has an inner
core. Anything steeper than a cored profile such as
Plummer will exhibit even more severe effects of mass
segregation [an exponential profile can also be used (see
Ref. [48]), with similar results].
We follow Brandt [28] and calculate the evolution of

radial shells by using the virial theorem and the diffusion
coefficient for weak scattering of stars off black holes (see
also Ref. [46]). The differential equation that governs the
evolution of radial mass shells as a function of time is then

dr
dt

¼ 4
ffiffiffi
2

p
πGfDMmBH

σ
lnΛ

"
α

Ms

ρDMr2
þ 2βr

#−1
: ð4Þ

We adopt for Segue 1 α ¼ 0.4, β ¼ 10 (see Brandt [28])
and a total mass in stars ofMs ¼ 340 M⊙ [31]. The choice
of values for α and β is such that the effects of mass
segregation are minimal and thus provide a conservative
choice [the result is insensitive to the choice of α as the
density of stars is much less than the density of dark matter;

FIG. 1. Left: The evolved stellar deficit as a function of radius in Segue 1 for various fractions fDM of black hole dark matter and black
hole masses mBH. The deficit increases as fDM and mBH increase. Right: Projected stellar surface density of Segue 1. Data points
represent the observed surface density [39]. Black curve shows the case with no black hole dark matter. Line types and colors correspond
to the same choices as in the left panel.
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lower values of β simply imply a higher normalization of
the r ∼ t1=2 solution to Eq. (4)].
The stars are initially distributed in a Plummer profile

with a scale radius of rs ¼ 16 pc. This value is 25% smaller
than the currently measured value of the Plummer scale
radius. Any other choice would lead to stronger constraints
on black hole dark matter (we confirmed this assumption
by repeating the analysis for a suite of initial scale radii of a
Plummer profile as well as by assuming an isothermal
sphere or a Hernquist profile as the initial distribution. All
these options led to stronger constraints to black hole dark
matter). We assume that the dark matter distribution is
described by a generalized NFW profile [49], whose
parameters α, β, γ, ρs, and rs as defined in Eq. (7) of
Ref. [50] are given by the median values obtained by the
MCMC analysis of Geringer-Sameth et al. [50]. The
median value of the profile parameters does not necessarily
correspond to the median value of the density at all radii.
We repeated the calculation by assuming the median of the
density at each integrated radial shell and find that the
deviations are negligible. In addition, repeating the calcu-
lation by marginalizing over all the kinematically allowed
distributions of dark matter also has negligible effects on
the results.
We assume that at t ¼ 0 the outer envelope of the profile

is similar to that observed at the present epoch. Any
evolution of the stellar density profile should leave the
outer regions of the stellar population unaffected. Given
that at present the half light radius of Segue 1–20 pc, we set
the profile to zero at a reasonably large radius of 300 pc.
We integrate Eq. (4) over 12 Gyr to obtain the evolution

of each radial shell as a function of time. We find two main
effects of black hole dark matter. First, each initial radial
distance (with stars interior to it) moves outwards, with the
displacement decreasing as the radius increases. There is no
shell crossing and as stars in the outer regions remain
unaffected, we find that stars that were displaced by black
holes lead to the presence of a spherical shell overdensity.
The depletion of stars in the inner regions leads to the
prediction of a stellar ring in projection [note that we ignore
the effects of evaporation for two reasons. First, the
evaporation time scale is ∼Oð10–100Þ longer than the
relaxation time scale and thus mass segregation will take
place well before any effects of evaporation appear. Second,
evaporation would deplete stars from the inner regions and,
therefore, augment the effects we observe here].
The left panel of Fig. 1 shows the present-day evolution

change of the stellar deficit δρs=ρs ∼ ½rð0Þ=rðtÞ%3 − 1 as a
function of radius. Increasing the fraction of black hole
dark matter leads to a larger depletion of stars in the center
of the galaxy. A similar effect is obtained when the fraction
of black hole dark matter is fixed but the black hole mass
increases. The right panel of Fig. 1 shows the projected
stellar surface density profile compared to the observed
stellar profile density obtained from the stars identified in

Simon et al. [39], binned in radii of an equal number of
stars (with Poisson errors).
We use the observed distribution of stars to place

constraints on the evolved light profile when there is a
nonzero fraction of black hole dark matter. For each
assumed value of fDM and mBH, we compute the evolved
projected stellar surface density profile and compare it with
the observed stellar profile [39]. We assign a χ2 test statistic
to each choice of fDM and mBH and compute the corre-
sponding p value for 3 d.o.f.. The result is shown in Fig. 2.
Black hole fractions greater than 6% (20%) for mBH ¼
30 M⊙ (mBH ¼ 10 M⊙) are ruled out at the 99.9% con-
fidence level. Figure 2 compares our results to previous
constraints from the observed half-light radius of the
Eridanus II dwarf galaxy [28], microlensing studies
[10,11], CMB photoionization limits from accretion onto
primordial black holes [20], and constraints from wide
binaries in the Milky Way [14]. The light profile of Segue 1
improves constraints on masses greater than 6 M⊙.
The above constraints can be improved if future obser-

vations would reveal more stars in Segue 1 (as well as other
dwarf galaxies). Figure 3 show a simulated smoothed
projected stellar density of Segue 1 in the case where there

FIG. 2. Constraints from the distribution of stars in Segue 1 on
the fraction of dark matter in the form of black holes, fDM, as a
function of black hole mass mBH. The solid (dashed) black
contour corresponds to a p value of 0.001 for the most (least)
conservative case where the velocity dispersion of Segue 1 is
4.1 km s−1 (2.7 km s−1). We also show limits from the evolution
of the half light radius of the Eridanus II dwarf galaxy as well as
other ultra faint dwarfs (UFDs) [28], Milky Way wide binaries
(using the 25 most halo like binaries) [14], microlensing limits
from Eros-2 [11] and MACHO experiments [10], and constraints
from CMB photoionization from accretion onto primordial black
holes [20]. In all these cases, the solid lines correspond to the
most conservative choice of parameters in these calculations
while the thin dashed lines correspond to the least conservative
choices. The stellar distribution in Segue 1 improves constraints
for masses greater than 6 M⊙.
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Figure 1. The transition from cusp to core (top panel) and the
increase of central velocity dispersion (bottom panel) due to col-
lisional relaxation e↵ect in a PBH-DM halo. The DM halo has a
mass of 2 ⇥ 109M� consisting of 30 M� PBHs. It has an initial
density profile of � = 1 and R0,DM = 500 pc, and a central veloc-
ity dispersion of 8 km/s, as represented by the thick black curves
in both panels. The thin lines show the evolution of the density
profile and the projected velocity dispersion from t = 0 to 12 Gyr
with an interval of 1.5 Gyr. The red dashed lines shows the best
matching PBH-DM halo of 109M� with a core density profile of
� = 0 and R0,DM = 160 pc, and an increased central velocity
dispersion.

DM velocity dispersion peaks at the scale radius. However,
if the DM is composed of PBHs, two-body relaxation will
soften the central cusp, and as a result of the collisional
heating, the velocity dispersion in the central region will
increase while the density will drop at the same time. This
process leads to the rapid formation of a core (Quinlan 1996)
as a result of “temperature inversion”, in which the colder
dense cusp will be heated by a hotter envelope.

Figure 1 illustrates how this relaxation e↵ect transforms
a PBH-DM halo from a � = 1 cusp to a � = 0 core. The DM
halo has a mass of 2 ⇥ 109M� composed of 30M� PBHs,
and an initial cuspy density profile of � = 1 and R0,DM =
500 pc. Collisional relaxation quickly removes the central
density cusp and increases the central velocity dispersion.

After 12 Gyrs, this PBH-DM halo can be approximated by
a less massive (109M

�

) one with a core density profile of
� = 0 and a characteristic scale radius of R0,DM = 160 pc,
as shown by the red dashed curves.

In order to determine the time scale of the transition
from cusp to core profiles, we set up cuspy DM halos consist-
ing of 30M� PBHs with a total mass in the range from 105 to
109 M� at redshift z = 10, based on the mass-concentration
relation from Diemer & Kravtsov (2015). We evolve the
PBH-DM halos using the FP code phaseflow. These simu-
lations show that the collisional relaxation e↵ect removes the
central cusp almost instantaneously, and the DM core grows
quickly in size. For instance, it takes only ⇠ 0.05 Gyr for
all the halos to develop a core of ⇠ 10 pc, and ⇠ 0.18 Gyr
to reach ⇠ 20 pc. If formed via hierarchical assembly, it
would be di�cult for DM halos of 108 � 109 M� to retain
density cusps in the first place since the central density of
their less massive progenitors has already been lowered. We
speculate that the density profile of a PBH-DM halo, simi-
lar to self-interacting DM (Vogelsberger et al. 2012), could
be described by a truncated singular sphere with a sizable
core (Shapiro et al. 1999). In the absence of a self-consistent
treatment of density profile of PBH-DM halos, we thus use
a cored density profile with � = 0 for any initial DM scale
radius R0,DM as our default choice for simulations in the fol-
lowing sections. In the Discussion Section, we will include a
test using � = 1 to examine the outcome with cuspy density
profiles.

3.2 Stars in PBH-DM halos

In a system with two components of di↵erent masses, two-
body encounters and energy exchange would lead to change
in the distribution of density and energy. To investigate the
evolution of a DM halo with stars and PBHs, we set up a
DM halo with a mass of 2⇥ 109 M�, which contains 103 M�
of stars, each being 1M�, and the DM is composed of 30M�
PBHs. The Plummer sphere for the stars has a total mass of
103M� and a scale radius of 5 pc, while the Dehnen sphere
for the DM has a total mass of 2 ⇥ 109M� and a scale ra-
dius R0,DM = 500 pc. The system is then followed with the
FP code phaseflow, and the results are shown in Figure 2.
Due to the huge di↵erence in both mass and size, the two
components have di↵erent initialization in both density pro-
file and velocity dispersion, and strong two-body relaxation
and energy exchange leads to significant change in the stel-
lar density profile and velocity dispersion. Because the PBH
is much more massive than the star, heating from PBHs
on the stars is the dominant driver for the evolution of the
stellar component. After 12 Gyrs, the central stellar den-
sity drops by nearly 3 orders of magnitude, as shown in the
upper panel of Figure 2 , while the central stellar velocity
dispersion increases by a factor of ⇠ 8, as in the lower panel.

As the density profile of the stars slowly di↵uses out,
the half-light radius increases. This process depends on the
density and velocity dispersion profile of the PBH halo. We
note that in Figure 2, the stellar velocity dispersion is well
below that of PBH-DM at t = 12 Gyr. Hence, equipartition
of energy between the two mass species, i.e. �(m)2 / m�1,
has not been achieved.

As first pointed out by Spitzer (1969), full energy
equipartition is possible only if the mass fraction of heavy
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Figure 2. E↵ects of two-body relaxation and energy exchange
on the density profile (top panel) and velocity dispersion (bottom
panel) of a two-component halo system with stars and PBH-DM.
The halo has a total DM mass of 2 ⇥ 109 M� composed of 30
M� PBHs, and a total stellar mass of 103 M� consisting of 1 M�
stars. The blue curves represent the PBH-DM component at t = 0
(dashed lines) and t = 12 Gyr (solid lines), while the red curves
represent the stellar components at t = 0 (dashed lines) and t =
12 Gyr (solid lines).

species is below some critical value. In our setup, the to-
tal mass ratio between PBHs and stars is well above the
critical value ⇠0.001(= 0.16(1/30)1.5). As a result, the cen-
tral regime will be devoid of stars, leading to only a “partial
equipartition”. Recently, Trenti & van der Marel (2013) and
Bianchini et al. (2016) reported partial equipartition in their
direct N-body simulations of globular clusters. Of course,
our example is quite extreme since the mass density profile
is completely dominated by PBHs at almost all radii.

The size increase due to heating of PBH appears to be
slightly slower than the analytical result obtained by Brandt

Figure 3. The evolution of 3D half-light radius of stellar compo-
nents with various initial conditions in a PBH-DM halo from our
simulations, in comparison with analytical result from Brandt
(2016). The di↵erent color represents di↵erent initial condition
with R0,⇤ varying from 3, 6, 9, 12 and 15 pc, respectively. Our
results show a rh ⇠ t0.4 size growth rate, slower than rh ⇠ t0.5

reported by Brandt (2016).

(2016). To further investigate this, we performed a set of FP
simulations with phaseflow for di↵erent initial stellar den-
sity distributions, by varying R0,⇤ from 3 to 15 pc, within a
fixed Dehnen sphere with a total DM mass of 2⇥109M� and
R0,DM = 500 pc. The resulting size evolution of the di↵erent
stellar components is shown in Figure 3, in comparison with
that of Brandt (2016). Our simulations show a slower growth
rate, rh / t0.4, than that of rh / t0.5 by Brandt (2016). The
heating rate of a less concentrated stellar component is also
slower than those of more concentrated ones. For example,
the magenta line on top of Figure 3 shows the size evolution
of a stellar core from R0,⇤ = 15 pc, which only approaches
the asymptotic t0.4 trend by the end of the integration. Our
results suggest that the final size of the stellar core only de-
pends weakly on the initial size, and that after ⇠ 10 Gyrs, a
two-component PBH-DM halo of 2⇥ 109M� would produce
a stellar core of ⇠ 50 pc regardless of its initial size.

From Figure 2, the stellar density profile after t =
12 Gyrs is very smooth, we do not see any ”ring profile” pre-
dicted by Koushiappas & Loeb (2017). The discrepancy may
be due to the di↵erent methods used to track the evolution
of the halo system. The FP simulations we performed with
phaseflow can track the two-body relaxation and energy
exchange between the di↵erent mass components accurately,
while the analytical formula used by Koushiappas & Loeb
(2017) may not be able to follow the evolution of the system
dynamically.
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15 The discovery of gravitational waves from merging pairs
16 ofmassive black holes [1–4] has opened a newwindow to the
17 astrophysics of black holes, their formation, and cosmic
18 evolution. Black holes of stellar masses have been observed
19 with LIGO [1–4] and supermassive black holes in galaxies
20 are expected to be detected by LISA over the next couple of
21 decades [5–7]. The sensitivity of the next generation of
22 ground-based gravitational wave detectors is expected to
23 improve by at least an order of magnitude [8], thus allowing
24 the detection of merging black hole events out to the highest
25 redshifts, potentially exceeding the reach of electromagnetic
26 observations that respond to amplitude squared and not
27 amplitude.
28 The expected rates of black hole mergers have been
29 calculated based on the number and properties of the few
30 events discovered to date (see, e.g., Refs. [9–11]). The rate
31 depends on a multitude of factors: black holes must be
32 formed and they must find a way to get close enough so that
33 gravitational waves can takeover as the dominant energy loss
34 mechanism. The redshift distribution encodes information
35 about the origin of black hole pairs. If black holes originate
36 frommassive stellar progenitors then the redshift distribution
37 should relate to the formation, accretion, and cooling of gas
38 in galaxies. If, on the other hand, the black holes are
39 primordial [12–16], then the redshift distribution will extend
40 to earlier cosmic times due to primordial binaries [17].
41 A key difference between these two scenarios is that in the
42 case of a baryonic origin, black holes must form out of cold
43 gas, which accreted into a dark matter gravitational potential
44 well, and then cooled to form black hole progenitors. This
45 path follows the abundance of appropriate potential wells.
46 In this Letter we calculate the maximum redshift of
47 expected black hole merger events that have baryonic origin
48 in the standard cosmological model. That is, the black holes
49 are formed in galaxies as opposed to primordial black
50 holes, or black holes that are formed in nonstandard
51 cosmological scenarios, e.g., cosmologies with a significant

52non-Gaussianity in the primordial density fluctuations of the
53dark matter.
54The significance of this calculation is twofold: First, it
55defines a maximum redshift over which baryonic structures
56can form, and, second, any detection above the derived
57bound will signify the presence of either non-Gaussianities
58that control the formation of baryonic structures at unex-
59pectedly high redshifts, or that black hole events may be
60due to primordial black holes.
61In the following we make two key assumptions in the
62derivation of a maximum redshift of baryonic black hole
63gravitational wave events. First, we conservatively assume
64that black hole pairs merge instantaneously; i.e., there is no
65time lag between the formation of black holes, the
66evolution of the binary, and the subsequent sequence of
67events that leads to a merger. Second, we conservatively
68assume that all gas accreted in dark matter halos ends up in
69stars that end up in black holes. Realistically, both of these
70assumptions are vastly optimistic. However, their applica-
71tion guarantees that the derived maximum redshift is indeed
72a very hard limit and thus any observation that violates this
73bound will be of enormous scientific significance.
74We begin by calculating the number of observed gravi-
75tational wave events per year greater than redshift z as the
76integral of the rate of black holemergers per redshift interval,

N ð> zÞ ¼
Z

∞

z

dR
dz

dz; ð1Þ

7778where dR=dz is the rate of merger events per redshift
79interval,

dR
dz
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Z

∞
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Future generation of gravitational wave detectors will have the sensitivity to detect gravitational
wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the
observed event rate is greater than one event per year at redshifts z � 40, then the probability
distribution of primordial density fluctuations must be significantly non-Gaussian or the events
originate from primordial black holes. The nature of the excess events can be determined from the
redshift distribution of the merger rate.
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The discovery of gravitational waves from merging
pairs of massive black holes [1–4] has opened a new win-
dow to the astrophysics of black holes, their formation,
and cosmic evolution. Black holes of stellar masses have
been observed with LIGO [1–4] and supermassive black
holes in galaxies are expected to be detected by LISA
over the next couple of decades [5–7]. The sensitivity of
the next generation of ground-based gravitational wave
detectors is expected to improve by at least an order of
magnitude [8], thus allowing the detection of merging
black holes events out to the highest redshifts, poten-
tially exceeding the reach of electromagnetic observations
which respond to amplitude squared and not amplitude.

The expected rates of black hole mergers has been cal-
culated based on the number and properties of the few
events discovered to-date (see, e.g. [9–11]). The rate
depends on a multitude of factors: black holes must be
formed and they must find a way to get close enough so
that gravitational waves can take-over as the dominant
energy loss mechanism. The redshift distribution encodes
information about the origin of black hole pairs. If black
holes originate from massive stellar progenitors then the
redshift distribution should relate to the formation, ac-
cretion, and cooling of gas in galaxies. If on the other
hand the black holes are primordial [12–16], then the
redshirt distribution will extend to earlier cosmic times
due to primordial binaries [17].

A key di↵erence between these two scenarios is that in
the case of a baryonic origin, black holes must form out of
cold gas, which accreted into a dark matter gravitational
potential well, and then cooled to form black hole pro-
genitors. This path follows the abundance of appropriate
potential wells.

In this letter we calculate the maximum redshift of ex-
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pected black hole merger events that have baryonic ori-
gin in the standard cosmological model. That is, the
black holes are formed in galaxies as opposed to primor-
dial black holes, or black holes that are formed in non-
standard cosmological scenarios, e.g., cosmologies with
a significant non-Gaussianity in the primordial density
fluctuations of the dark matter.

The significance of this calculation is two-fold: first, it
defines a maximum redshift over which baryonic struc-
tures can form, and second any detection above the
derived bound will signify the presence of either non-
Gaussianities that control the formation of baryonic
structures at unexpectedly high redshifts, or that black
hole events may be due to primordial black holes.

In the following we make two key assumptions in the
derivation of a maximum redshift of baryonic black hole
gravitational wave events. First, we conservatively as-
sume that black hole pairs merge instantaneously, i.e.,
there is no time lag between the formation of black holes,
the evolution of the binary and the subsequent sequence
of events that leads to a merger. Second, we conserva-
tively assume that all gas accreted in dark matter halos
end up in stars that end up in black holes. Realistically,
both of these assumptions are vastly optimistic. How-
ever, their application guarantees that the derived max-
imum redshift is indeed a very hard limit and thus any
observation that violates this bound will be of enormous
scientific significance.

We begin by calculating the number of observed grav-
itational wave events per year greater than redshift z as
the integral of the rate of black hole mergers per redshift
interval

N (> z) =

Z 1

z

dR
dz

dz, (1)

where dR/dz is the rate of merger events per redshift
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Here, dN/dMdV is the comoving density of dark matter
halos of mass M at redshift z, CNG(M, z) is a correction
to the mass function in the case where non-Gaussianity
is present (with CNG(M, z) = 1 in the standard ⇤CDM
cosmology), Ṁg(M, z) is the rate of accreted gas in halos
of mass M at z, h✏(M, z)i is the e�ciency of converting
gas to black holes of mass mBH, dV/dz is the comoving
volume per redshift interval and the (1 + z) factor in
the denominator is to convert the rest frame rate to the
observed rate.

The integral in Equation (2) is performed from a min-
imum halo mass Mmin(z) to infinity. Throughout the
paper we use a cosmological model with a power spec-
trum with a spectral index ns = 0.967, a normaliza-
tion �8 = 0.81, a present value of the Hubble param-
eter H0 = 70.4km/s/Mpc and dark matter, baryonic
and cosmological constant mass density parameters of
⌦DM = 0.226, ⌦b = 0.0455, and ⌦⇤ = 0.728, respec-
tively [18].

We next explain how we calculate each of these quan-
tities. The expected number of gravitational wave events
depends strongly on the halo mass function which de-
clines exponentially at high redshifts for Gaussian fluctu-
ations. Figure 1 shows the mass function at high redshifts
from 15 di↵erent numerical simulations [19–31]. The only
results that are valid at the high redshifts we consider
here are the ones of [25, 26, 29]. The halo masses of
interest at these high redshifts correspond to extremely
rare peaks. The abundance of halos is roughly bounded
by two functional forms – the analytic form of Press-
Schecter [31] (red curve in Figure 1) gives the lowest num-
ber of halos while the ellipsoidal collapse model of Sheth,
Mo & Tormen [30] gives the maximum (blue curve in
Figure 1). All other mass functions, including the more
realistic results in [25, 26, 29] lie in between these two
analytic forms.

The presence of a non-Gaussianity in the initial condi-
tions can alter the abundance of dark matter halos, espe-
cially in the exponential tail of the mass function (which
is the regime of interest here). We therefore modify the
mass function to include such features by assuming that
the non-Gaussian mass function is the product of the
Gaussian mass function multiplied by a correction fac-
tor [32] that describes fNL cosmologies [34–37] (though
it is important to emphasize that fNL is just one possible
parametrization of non-Gaussianities),
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FIG. 1: Halo mass functions at z =20, 30, 40 & 50.
At each redshift the multiple grey lines correspond to the
mass functions derived in Refs. [19–29]. The red line corre-
sponds to the Press-Schecter mass function [31] while the blue
line corresponds to the Sheth, Mo & Tormen mass function
[30]. At each redshift, the range of mass function values is
bounded roughly by these two analytic mass functions. The
dashed blue lines correspond to the Sheth, Mo & Tormen
mass function with a correction [32] for a cosmology with a
non-Gaussianity parameter fNL = 43 [33].

Tormen mass function [30], modified to include the e↵ects
of fNL non-Gaussianities [33] is shown in Figure 1 as the
blue dashed curve. We consider this modified mass func-
tion to represent the maximum abundance of dark mat-
ter halos (repeating the calculations for cosmologies with
gNL or ⌧NL within the current limits [33] leads to smaller
e↵ects than the e↵ects from the current uncertainties in
fNL).
It is also important to note that the mass function

depends on the normalization of the power spectrum;
however, the current percent-level uncertainty of �8 is
negligible for our purposes.
The quantity Ṁb(M, z)) represents the rate of gas in-

flow in halos of mass M at z. It has been predicted in
simple theoretical grounds [38] and has been measured
in hydrodynamical simulations at high redshift [39, 40].
We adopt the maximum gas accretion rate [40],

Ṁg(M, z) ⇡ 10�3M�yr
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where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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volume per redshift interval and the (1 + z) factor in
the denominator is to convert the rest frame rate to the
observed rate.

The integral in Equation (2) is performed from a min-
imum halo mass Mmin(z) to infinity. Throughout the
paper we use a cosmological model with a power spec-
trum with a spectral index ns = 0.967, a normaliza-
tion �8 = 0.81, a present value of the Hubble param-
eter H0 = 70.4km/s/Mpc and dark matter, baryonic
and cosmological constant mass density parameters of
⌦DM = 0.226, ⌦b = 0.0455, and ⌦⇤ = 0.728, respec-
tively [18].

We next explain how we calculate each of these quan-
tities. The expected number of gravitational wave events
depends strongly on the halo mass function which de-
clines exponentially at high redshifts for Gaussian fluctu-
ations. Figure 1 shows the mass function at high redshifts
from 15 di↵erent numerical simulations [19–31]. The only
results that are valid at the high redshifts we consider
here are the ones of [25, 26, 29]. The halo masses of
interest at these high redshifts correspond to extremely
rare peaks. The abundance of halos is roughly bounded
by two functional forms – the analytic form of Press-
Schecter [31] (red curve in Figure 1) gives the lowest num-
ber of halos while the ellipsoidal collapse model of Sheth,
Mo & Tormen [30] gives the maximum (blue curve in
Figure 1). All other mass functions, including the more
realistic results in [25, 26, 29] lie in between these two
analytic forms.

The presence of a non-Gaussianity in the initial condi-
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is the regime of interest here). We therefore modify the
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sponds to the Press-Schecter mass function [31] while the blue
line corresponds to the Sheth, Mo & Tormen mass function
[30]. At each redshift, the range of mass function values is
bounded roughly by these two analytic mass functions. The
dashed blue lines correspond to the Sheth, Mo & Tormen
mass function with a correction [32] for a cosmology with a
non-Gaussianity parameter fNL = 43 [33].

Tormen mass function [30], modified to include the e↵ects
of fNL non-Gaussianities [33] is shown in Figure 1 as the
blue dashed curve. We consider this modified mass func-
tion to represent the maximum abundance of dark mat-
ter halos (repeating the calculations for cosmologies with
gNL or ⌧NL within the current limits [33] leads to smaller
e↵ects than the e↵ects from the current uncertainties in
fNL).
It is also important to note that the mass function

depends on the normalization of the power spectrum;
however, the current percent-level uncertainty of �8 is
negligible for our purposes.
The quantity Ṁb(M, z)) represents the rate of gas in-

flow in halos of mass M at z. It has been predicted in
simple theoretical grounds [38] and has been measured
in hydrodynamical simulations at high redshift [39, 40].
We adopt the maximum gas accretion rate [40],

Ṁg(M, z) ⇡ 10�3M�yr
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where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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Future generation of gravitational wave detectors will have the sensitivity to detect gravitational
wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the
observed event rate is greater than one event per year at redshifts z � 40, then the probability
distribution of primordial density fluctuations must be significantly non-Gaussian or the events
originate from primordial black holes. The nature of the excess events can be determined from the
redshift distribution of the merger rate.
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The discovery of gravitational waves from merging
pairs of massive black holes [1–4] has opened a new win-
dow to the astrophysics of black holes, their formation,
and cosmic evolution. Black holes of stellar masses have
been observed with LIGO [1–4] and supermassive black
holes in galaxies are expected to be detected by LISA
over the next couple of decades [5–7]. The sensitivity of
the next generation of ground-based gravitational wave
detectors is expected to improve by at least an order of
magnitude [8], thus allowing the detection of merging
black holes events out to the highest redshifts, poten-
tially exceeding the reach of electromagnetic observations
which respond to amplitude squared and not amplitude.

The expected rates of black hole mergers has been cal-
culated based on the number and properties of the few
events discovered to-date (see, e.g. [9–11]). The rate
depends on a multitude of factors: black holes must be
formed and they must find a way to get close enough so
that gravitational waves can take-over as the dominant
energy loss mechanism. The redshift distribution encodes
information about the origin of black hole pairs. If black
holes originate from massive stellar progenitors then the
redshift distribution should relate to the formation, ac-
cretion, and cooling of gas in galaxies. If on the other
hand the black holes are primordial [12–16], then the
redshirt distribution will extend to earlier cosmic times
due to primordial binaries [17].

A key di↵erence between these two scenarios is that in
the case of a baryonic origin, black holes must form out of
cold gas, which accreted into a dark matter gravitational
potential well, and then cooled to form black hole pro-
genitors. This path follows the abundance of appropriate
potential wells.

In this letter we calculate the maximum redshift of ex-
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pected black hole merger events that have baryonic ori-
gin in the standard cosmological model. That is, the
black holes are formed in galaxies as opposed to primor-
dial black holes, or black holes that are formed in non-
standard cosmological scenarios, e.g., cosmologies with
a significant non-Gaussianity in the primordial density
fluctuations of the dark matter.

The significance of this calculation is two-fold: first, it
defines a maximum redshift over which baryonic struc-
tures can form, and second any detection above the
derived bound will signify the presence of either non-
Gaussianities that control the formation of baryonic
structures at unexpectedly high redshifts, or that black
hole events may be due to primordial black holes.

In the following we make two key assumptions in the
derivation of a maximum redshift of baryonic black hole
gravitational wave events. First, we conservatively as-
sume that black hole pairs merge instantaneously, i.e.,
there is no time lag between the formation of black holes,
the evolution of the binary and the subsequent sequence
of events that leads to a merger. Second, we conserva-
tively assume that all gas accreted in dark matter halos
end up in stars that end up in black holes. Realistically,
both of these assumptions are vastly optimistic. How-
ever, their application guarantees that the derived max-
imum redshift is indeed a very hard limit and thus any
observation that violates this bound will be of enormous
scientific significance.

We begin by calculating the number of observed grav-
itational wave events per year greater than redshift z as
the integral of the rate of black hole mergers per redshift
interval

N (> z) =

Z 1
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dR
dz

dz, (1)

where dR/dz is the rate of merger events per redshift
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Here, dN/dMdV is the comoving density of dark matter
halos of mass M at redshift z, CNG(M, z) is a correction
to the mass function in the case where non-Gaussianity
is present (with CNG(M, z) = 1 in the standard ⇤CDM
cosmology), Ṁg(M, z) is the rate of accreted gas in halos
of mass M at z, h✏(M, z)i is the e�ciency of converting
gas to black holes of mass mBH, dV/dz is the comoving
volume per redshift interval and the (1 + z) factor in
the denominator is to convert the rest frame rate to the
observed rate.

The integral in Equation (2) is performed from a min-
imum halo mass Mmin(z) to infinity. Throughout the
paper we use a cosmological model with a power spec-
trum with a spectral index ns = 0.967, a normaliza-
tion �8 = 0.81, a present value of the Hubble param-
eter H0 = 70.4km/s/Mpc and dark matter, baryonic
and cosmological constant mass density parameters of
⌦DM = 0.226, ⌦b = 0.0455, and ⌦⇤ = 0.728, respec-
tively [18].

We next explain how we calculate each of these quan-
tities. The expected number of gravitational wave events
depends strongly on the halo mass function which de-
clines exponentially at high redshifts for Gaussian fluctu-
ations. Figure 1 shows the mass function at high redshifts
from 15 di↵erent numerical simulations [19–31]. The only
results that are valid at the high redshifts we consider
here are the ones of [25, 26, 29]. The halo masses of
interest at these high redshifts correspond to extremely
rare peaks. The abundance of halos is roughly bounded
by two functional forms – the analytic form of Press-
Schecter [31] (red curve in Figure 1) gives the lowest num-
ber of halos while the ellipsoidal collapse model of Sheth,
Mo & Tormen [30] gives the maximum (blue curve in
Figure 1). All other mass functions, including the more
realistic results in [25, 26, 29] lie in between these two
analytic forms.

The presence of a non-Gaussianity in the initial condi-
tions can alter the abundance of dark matter halos, espe-
cially in the exponential tail of the mass function (which
is the regime of interest here). We therefore modify the
mass function to include such features by assuming that
the non-Gaussian mass function is the product of the
Gaussian mass function multiplied by a correction fac-
tor [32] that describes fNL cosmologies [34–37] (though
it is important to emphasize that fNL is just one possible
parametrization of non-Gaussianities),
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FIG. 1: Halo mass functions at z =20, 30, 40 & 50.
At each redshift the multiple grey lines correspond to the
mass functions derived in Refs. [19–29]. The red line corre-
sponds to the Press-Schecter mass function [31] while the blue
line corresponds to the Sheth, Mo & Tormen mass function
[30]. At each redshift, the range of mass function values is
bounded roughly by these two analytic mass functions. The
dashed blue lines correspond to the Sheth, Mo & Tormen
mass function with a correction [32] for a cosmology with a
non-Gaussianity parameter fNL = 43 [33].

Tormen mass function [30], modified to include the e↵ects
of fNL non-Gaussianities [33] is shown in Figure 1 as the
blue dashed curve. We consider this modified mass func-
tion to represent the maximum abundance of dark mat-
ter halos (repeating the calculations for cosmologies with
gNL or ⌧NL within the current limits [33] leads to smaller
e↵ects than the e↵ects from the current uncertainties in
fNL).
It is also important to note that the mass function

depends on the normalization of the power spectrum;
however, the current percent-level uncertainty of �8 is
negligible for our purposes.
The quantity Ṁb(M, z)) represents the rate of gas in-

flow in halos of mass M at z. It has been predicted in
simple theoretical grounds [38] and has been measured
in hydrodynamical simulations at high redshift [39, 40].
We adopt the maximum gas accretion rate [40],

Ṁg(M, z) ⇡ 10�3M�yr
�1

✓
M

106M�

◆1.127 ✓1 + z

20

◆⌘

,

(4)
where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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Here, dN/dMdV is the comoving density of dark matter
halos of mass M at redshift z, CNG(M, z) is a correction
to the mass function in the case where non-Gaussianity
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volume per redshift interval and the (1 + z) factor in
the denominator is to convert the rest frame rate to the
observed rate.

The integral in Equation (2) is performed from a min-
imum halo mass Mmin(z) to infinity. Throughout the
paper we use a cosmological model with a power spec-
trum with a spectral index ns = 0.967, a normaliza-
tion �8 = 0.81, a present value of the Hubble param-
eter H0 = 70.4km/s/Mpc and dark matter, baryonic
and cosmological constant mass density parameters of
⌦DM = 0.226, ⌦b = 0.0455, and ⌦⇤ = 0.728, respec-
tively [18].

We next explain how we calculate each of these quan-
tities. The expected number of gravitational wave events
depends strongly on the halo mass function which de-
clines exponentially at high redshifts for Gaussian fluctu-
ations. Figure 1 shows the mass function at high redshifts
from 15 di↵erent numerical simulations [19–31]. The only
results that are valid at the high redshifts we consider
here are the ones of [25, 26, 29]. The halo masses of
interest at these high redshifts correspond to extremely
rare peaks. The abundance of halos is roughly bounded
by two functional forms – the analytic form of Press-
Schecter [31] (red curve in Figure 1) gives the lowest num-
ber of halos while the ellipsoidal collapse model of Sheth,
Mo & Tormen [30] gives the maximum (blue curve in
Figure 1). All other mass functions, including the more
realistic results in [25, 26, 29] lie in between these two
analytic forms.

The presence of a non-Gaussianity in the initial condi-
tions can alter the abundance of dark matter halos, espe-
cially in the exponential tail of the mass function (which
is the regime of interest here). We therefore modify the
mass function to include such features by assuming that
the non-Gaussian mass function is the product of the
Gaussian mass function multiplied by a correction fac-
tor [32] that describes fNL cosmologies [34–37] (though
it is important to emphasize that fNL is just one possible
parametrization of non-Gaussianities),
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FIG. 1: Halo mass functions at z =20, 30, 40 & 50.
At each redshift the multiple grey lines correspond to the
mass functions derived in Refs. [19–29]. The red line corre-
sponds to the Press-Schecter mass function [31] while the blue
line corresponds to the Sheth, Mo & Tormen mass function
[30]. At each redshift, the range of mass function values is
bounded roughly by these two analytic mass functions. The
dashed blue lines correspond to the Sheth, Mo & Tormen
mass function with a correction [32] for a cosmology with a
non-Gaussianity parameter fNL = 43 [33].

Tormen mass function [30], modified to include the e↵ects
of fNL non-Gaussianities [33] is shown in Figure 1 as the
blue dashed curve. We consider this modified mass func-
tion to represent the maximum abundance of dark mat-
ter halos (repeating the calculations for cosmologies with
gNL or ⌧NL within the current limits [33] leads to smaller
e↵ects than the e↵ects from the current uncertainties in
fNL).
It is also important to note that the mass function

depends on the normalization of the power spectrum;
however, the current percent-level uncertainty of �8 is
negligible for our purposes.
The quantity Ṁb(M, z)) represents the rate of gas in-

flow in halos of mass M at z. It has been predicted in
simple theoretical grounds [38] and has been measured
in hydrodynamical simulations at high redshift [39, 40].
We adopt the maximum gas accretion rate [40],
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where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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M. Kamionkowski, E. D. Kovetz, A. Raccanelli, and
A. G. Riess, Physical Review Letters 116, 201301 (2016),
1603.00464.

[18] Planck Collaboration, P. A. R. Ade, N. Aghanim,
C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-
Barandela, J. Aumont, C. Baccigalupi, A. J. Banday,
et al., A&A 571, A16 (2014), 1303.5076.

[19] R. E. Angulo, V. Springel, S. D. M. White, A. Jenkins,
C. M. Baugh, and C. S. Frenk, MNRAS 426, 2046 (2012),
1203.3216.

[20] P. S. Behroozi, R. H. Wechsler, and C. Conroy, ApJ 770,
57 (2013), 1207.6105.

[21] S. Bhattacharya, K. Heitmann, M. White, Z. Lukić,
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Future generation of gravitational wave detectors will have the sensitivity to detect gravitational
wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the
observed event rate is greater than one event per year at redshifts z � 40, then the probability
distribution of primordial density fluctuations must be significantly non-Gaussian or the events
originate from primordial black holes. The nature of the excess events can be determined from the
redshift distribution of the merger rate.
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The discovery of gravitational waves from merging
pairs of massive black holes [1–4] has opened a new win-
dow to the astrophysics of black holes, their formation,
and cosmic evolution. Black holes of stellar masses have
been observed with LIGO [1–4] and supermassive black
holes in galaxies are expected to be detected by LISA
over the next couple of decades [5–7]. The sensitivity of
the next generation of ground-based gravitational wave
detectors is expected to improve by at least an order of
magnitude [8], thus allowing the detection of merging
black holes events out to the highest redshifts, poten-
tially exceeding the reach of electromagnetic observations
which respond to amplitude squared and not amplitude.

The expected rates of black hole mergers has been cal-
culated based on the number and properties of the few
events discovered to-date (see, e.g. [9–11]). The rate
depends on a multitude of factors: black holes must be
formed and they must find a way to get close enough so
that gravitational waves can take-over as the dominant
energy loss mechanism. The redshift distribution encodes
information about the origin of black hole pairs. If black
holes originate from massive stellar progenitors then the
redshift distribution should relate to the formation, ac-
cretion, and cooling of gas in galaxies. If on the other
hand the black holes are primordial [12–16], then the
redshirt distribution will extend to earlier cosmic times
due to primordial binaries [17].

A key di↵erence between these two scenarios is that in
the case of a baryonic origin, black holes must form out of
cold gas, which accreted into a dark matter gravitational
potential well, and then cooled to form black hole pro-
genitors. This path follows the abundance of appropriate
potential wells.

In this letter we calculate the maximum redshift of ex-
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pected black hole merger events that have baryonic ori-
gin in the standard cosmological model. That is, the
black holes are formed in galaxies as opposed to primor-
dial black holes, or black holes that are formed in non-
standard cosmological scenarios, e.g., cosmologies with
a significant non-Gaussianity in the primordial density
fluctuations of the dark matter.

The significance of this calculation is two-fold: first, it
defines a maximum redshift over which baryonic struc-
tures can form, and second any detection above the
derived bound will signify the presence of either non-
Gaussianities that control the formation of baryonic
structures at unexpectedly high redshifts, or that black
hole events may be due to primordial black holes.

In the following we make two key assumptions in the
derivation of a maximum redshift of baryonic black hole
gravitational wave events. First, we conservatively as-
sume that black hole pairs merge instantaneously, i.e.,
there is no time lag between the formation of black holes,
the evolution of the binary and the subsequent sequence
of events that leads to a merger. Second, we conserva-
tively assume that all gas accreted in dark matter halos
end up in stars that end up in black holes. Realistically,
both of these assumptions are vastly optimistic. How-
ever, their application guarantees that the derived max-
imum redshift is indeed a very hard limit and thus any
observation that violates this bound will be of enormous
scientific significance.

We begin by calculating the number of observed grav-
itational wave events per year greater than redshift z as
the integral of the rate of black hole mergers per redshift
interval

N (> z) =

Z 1

z

dR
dz

dz, (1)

where dR/dz is the rate of merger events per redshift
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Here, dN/dMdV is the comoving density of dark matter
halos of mass M at redshift z, CNG(M, z) is a correction
to the mass function in the case where non-Gaussianity
is present (with CNG(M, z) = 1 in the standard ⇤CDM
cosmology), Ṁg(M, z) is the rate of accreted gas in halos
of mass M at z, h✏(M, z)i is the e�ciency of converting
gas to black holes of mass mBH, dV/dz is the comoving
volume per redshift interval and the (1 + z) factor in
the denominator is to convert the rest frame rate to the
observed rate.

The integral in Equation (2) is performed from a min-
imum halo mass Mmin(z) to infinity. Throughout the
paper we use a cosmological model with a power spec-
trum with a spectral index ns = 0.967, a normaliza-
tion �8 = 0.81, a present value of the Hubble param-
eter H0 = 70.4km/s/Mpc and dark matter, baryonic
and cosmological constant mass density parameters of
⌦DM = 0.226, ⌦b = 0.0455, and ⌦⇤ = 0.728, respec-
tively [18].

We next explain how we calculate each of these quan-
tities. The expected number of gravitational wave events
depends strongly on the halo mass function which de-
clines exponentially at high redshifts for Gaussian fluctu-
ations. Figure 1 shows the mass function at high redshifts
from 15 di↵erent numerical simulations [19–31]. The only
results that are valid at the high redshifts we consider
here are the ones of [25, 26, 29]. The halo masses of
interest at these high redshifts correspond to extremely
rare peaks. The abundance of halos is roughly bounded
by two functional forms – the analytic form of Press-
Schecter [31] (red curve in Figure 1) gives the lowest num-
ber of halos while the ellipsoidal collapse model of Sheth,
Mo & Tormen [30] gives the maximum (blue curve in
Figure 1). All other mass functions, including the more
realistic results in [25, 26, 29] lie in between these two
analytic forms.

The presence of a non-Gaussianity in the initial condi-
tions can alter the abundance of dark matter halos, espe-
cially in the exponential tail of the mass function (which
is the regime of interest here). We therefore modify the
mass function to include such features by assuming that
the non-Gaussian mass function is the product of the
Gaussian mass function multiplied by a correction fac-
tor [32] that describes fNL cosmologies [34–37] (though
it is important to emphasize that fNL is just one possible
parametrization of non-Gaussianities),

CNG(M) =


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FIG. 1: Halo mass functions at z =20, 30, 40 & 50.
At each redshift the multiple grey lines correspond to the
mass functions derived in Refs. [19–29]. The red line corre-
sponds to the Press-Schecter mass function [31] while the blue
line corresponds to the Sheth, Mo & Tormen mass function
[30]. At each redshift, the range of mass function values is
bounded roughly by these two analytic mass functions. The
dashed blue lines correspond to the Sheth, Mo & Tormen
mass function with a correction [32] for a cosmology with a
non-Gaussianity parameter fNL = 43 [33].

Tormen mass function [30], modified to include the e↵ects
of fNL non-Gaussianities [33] is shown in Figure 1 as the
blue dashed curve. We consider this modified mass func-
tion to represent the maximum abundance of dark mat-
ter halos (repeating the calculations for cosmologies with
gNL or ⌧NL within the current limits [33] leads to smaller
e↵ects than the e↵ects from the current uncertainties in
fNL).
It is also important to note that the mass function

depends on the normalization of the power spectrum;
however, the current percent-level uncertainty of �8 is
negligible for our purposes.
The quantity Ṁb(M, z)) represents the rate of gas in-

flow in halos of mass M at z. It has been predicted in
simple theoretical grounds [38] and has been measured
in hydrodynamical simulations at high redshift [39, 40].
We adopt the maximum gas accretion rate [40],

Ṁg(M, z) ⇡ 10�3M�yr
�1
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M
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,
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where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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Tormen mass function [30], modified to include the e↵ects
of fNL non-Gaussianities [33] is shown in Figure 1 as the
blue dashed curve. We consider this modified mass func-
tion to represent the maximum abundance of dark mat-
ter halos (repeating the calculations for cosmologies with
gNL or ⌧NL within the current limits [33] leads to smaller
e↵ects than the e↵ects from the current uncertainties in
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where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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V. Boucher, and A. Füzfa, MNRAS 410, 1911 (2011),
1001.3425.

[23] M. Crocce, P. Fosalba, F. J. Castander, and
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FIG. 3: The number of gravitational wave events of mBH =
30M� black hole pairs originating from redshifts greater than
z (Equation 1) as a function of redshift. The blue curve cor-
responds to the upper limit on the halo mass function [30], a
low value of Mmin (i.e., ignoring the e↵ects of a relative speed
between dark matter and baryons [44]) and a high value of
gas accretion [40]. The dashed blue curve makes the same as-
sumptions as above, but with a modified mass function that
includes a correction corresponding to non-Gaussianity with
fNL = 43 [33]. The red curve assumes the lower limit on the
mass function [31], a large minimum mass (assuming relative
velocities between baryons and dark matter [44]) and a low
gas accretion rate [39]. The shaded area represents everything
in between these two extreme cases. The two vertical lines
correspond to the 5� and 10� sensitivity to mBH = 30M�
black hole pairs with the future gravitational wave detector,
Cosmic Explorer [8].

a truly hard bound that cannot be violated unless some-
thing very drastically di↵erent takes place at high red-
shifts.

The aforementioned assumptions can be relaxed and in
some cases it is easy to read o↵ the e↵ect on the result (as
the vertical axis is a scalable quantity). For example, if
all accreted gas ends up in black holes of mass of mBH =
10M� (instead of 30M�) then the solid curves in Figure 3
simply move up by a factor of 3. If on the other hand only
a fraction of 0.1% of gas ends in black holes of mBH =
30M� then the result of Figure 3 moves down by a factor
of 10�3.

In addition, the assumption of a ��function mass spec-
trum of black holes is not realistic. A range of black hole
masses is most likely present. The e↵ects of such an
assumption have been studied in the context of explain-
ing the current rate of observed black hole merger events
with LIGO [48–55]. In our case, such a black hole mass
function will alter the shape of N (z), but the e↵ect on
zmax is negligible since the factors that give rise to the
cuto↵ remain as discussed earlier (namely the shape of
the halo mass function and the decline in gas infall at
high redshifts).
The prediction of a maximum redshift for black hole

merger events can be tested with future gravitational
wave detectors. In particular, Cosmic Explorer [8] will
have the ability to detect events at these very high red-
shifts. Given the current design capabilities, Cosmic Ex-
plorer will be able to detect the merger of 30M� black
hole pairs at 10� significance out to redshift of z ⇡ 36
and at 5� significance to redshift z ⇡ 44 [8]. These two
limits are shown as vertical dashed lines in Figure 3.
Any detection of an event rate greater than once a year

from a redshift greater than zmax ⇡ 40 will have major
implications for cosmology. It would mean that either
structure formation is not proceeding in the way that is
currently envisioned, or that black hole mergers are due
to some exotic phenomenon. Two such possibilities ex-
ist: a strange non-Gaussianity that is not parametrized
in terms of fNL (e.g., decay of cosmic strings [56]), or
from the merger of primordial black holes [17]. The lat-
ter idea has received considerable attention recently in
light of the spectacular detection of gravitational waves
by LIGO; however at present it seems that other astro-
physical constraints make such a possibility less likely
[57–65]. Nevertheless, if events with redshifts greater
than zmax ⇡ 40 appear with rates greater than once per
year, it may still be possible to disentangle their origin
by looking at their redshift distribution as the exact de-
pendence on redshift will be sensitive to the abundance
of primordial binaries.
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Future generation of gravitational wave detectors will have the sensitivity to detect gravitational
wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the
observed event rate is greater than one event per year at redshifts z � 40, then the probability
distribution of primordial density fluctuations must be significantly non-Gaussian or the events
originate from primordial black holes. The nature of the excess events can be determined from the
redshift distribution of the merger rate.

PACS numbers: 95.35.+d, 98.80.-k, 04.30.Db, 04.30.?w

The discovery of gravitational waves from merging
pairs of massive black holes [1–4] has opened a new win-
dow to the astrophysics of black holes, their formation,
and cosmic evolution. Black holes of stellar masses have
been observed with LIGO [1–4] and supermassive black
holes in galaxies are expected to be detected by LISA
over the next couple of decades [5–7]. The sensitivity of
the next generation of ground-based gravitational wave
detectors is expected to improve by at least an order of
magnitude [8], thus allowing the detection of merging
black holes events out to the highest redshifts, poten-
tially exceeding the reach of electromagnetic observations
which respond to amplitude squared and not amplitude.

The expected rates of black hole mergers has been cal-
culated based on the number and properties of the few
events discovered to-date (see, e.g. [9–11]). The rate
depends on a multitude of factors: black holes must be
formed and they must find a way to get close enough so
that gravitational waves can take-over as the dominant
energy loss mechanism. The redshift distribution encodes
information about the origin of black hole pairs. If black
holes originate from massive stellar progenitors then the
redshift distribution should relate to the formation, ac-
cretion, and cooling of gas in galaxies. If on the other
hand the black holes are primordial [12–16], then the
redshirt distribution will extend to earlier cosmic times
due to primordial binaries [17].

A key di↵erence between these two scenarios is that in
the case of a baryonic origin, black holes must form out of
cold gas, which accreted into a dark matter gravitational
potential well, and then cooled to form black hole pro-
genitors. This path follows the abundance of appropriate
potential wells.

In this letter we calculate the maximum redshift of ex-

⇤
Electronic address: koushiappas@brown.edu

†
Electronic address: loeb@cfa.harvard.edu

pected black hole merger events that have baryonic ori-
gin in the standard cosmological model. That is, the
black holes are formed in galaxies as opposed to primor-
dial black holes, or black holes that are formed in non-
standard cosmological scenarios, e.g., cosmologies with
a significant non-Gaussianity in the primordial density
fluctuations of the dark matter.

The significance of this calculation is two-fold: first, it
defines a maximum redshift over which baryonic struc-
tures can form, and second any detection above the
derived bound will signify the presence of either non-
Gaussianities that control the formation of baryonic
structures at unexpectedly high redshifts, or that black
hole events may be due to primordial black holes.

In the following we make two key assumptions in the
derivation of a maximum redshift of baryonic black hole
gravitational wave events. First, we conservatively as-
sume that black hole pairs merge instantaneously, i.e.,
there is no time lag between the formation of black holes,
the evolution of the binary and the subsequent sequence
of events that leads to a merger. Second, we conserva-
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Here, dN/dMdV is the comoving density of dark matter
halos of mass M at redshift z, CNG(M, z) is a correction
to the mass function in the case where non-Gaussianity
is present (with CNG(M, z) = 1 in the standard ⇤CDM
cosmology), Ṁg(M, z) is the rate of accreted gas in halos
of mass M at z, h✏(M, z)i is the e�ciency of converting
gas to black holes of mass mBH, dV/dz is the comoving
volume per redshift interval and the (1 + z) factor in
the denominator is to convert the rest frame rate to the
observed rate.

The integral in Equation (2) is performed from a min-
imum halo mass Mmin(z) to infinity. Throughout the
paper we use a cosmological model with a power spec-
trum with a spectral index ns = 0.967, a normaliza-
tion �8 = 0.81, a present value of the Hubble param-
eter H0 = 70.4km/s/Mpc and dark matter, baryonic
and cosmological constant mass density parameters of
⌦DM = 0.226, ⌦b = 0.0455, and ⌦⇤ = 0.728, respec-
tively [18].

We next explain how we calculate each of these quan-
tities. The expected number of gravitational wave events
depends strongly on the halo mass function which de-
clines exponentially at high redshifts for Gaussian fluctu-
ations. Figure 1 shows the mass function at high redshifts
from 15 di↵erent numerical simulations [19–31]. The only
results that are valid at the high redshifts we consider
here are the ones of [25, 26, 29]. The halo masses of
interest at these high redshifts correspond to extremely
rare peaks. The abundance of halos is roughly bounded
by two functional forms – the analytic form of Press-
Schecter [31] (red curve in Figure 1) gives the lowest num-
ber of halos while the ellipsoidal collapse model of Sheth,
Mo & Tormen [30] gives the maximum (blue curve in
Figure 1). All other mass functions, including the more
realistic results in [25, 26, 29] lie in between these two
analytic forms.

The presence of a non-Gaussianity in the initial condi-
tions can alter the abundance of dark matter halos, espe-
cially in the exponential tail of the mass function (which
is the regime of interest here). We therefore modify the
mass function to include such features by assuming that
the non-Gaussian mass function is the product of the
Gaussian mass function multiplied by a correction fac-
tor [32] that describes fNL cosmologies [34–37] (though
it is important to emphasize that fNL is just one possible
parametrization of non-Gaussianities),
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FIG. 1: Halo mass functions at z =20, 30, 40 & 50.
At each redshift the multiple grey lines correspond to the
mass functions derived in Refs. [19–29]. The red line corre-
sponds to the Press-Schecter mass function [31] while the blue
line corresponds to the Sheth, Mo & Tormen mass function
[30]. At each redshift, the range of mass function values is
bounded roughly by these two analytic mass functions. The
dashed blue lines correspond to the Sheth, Mo & Tormen
mass function with a correction [32] for a cosmology with a
non-Gaussianity parameter fNL = 43 [33].

Tormen mass function [30], modified to include the e↵ects
of fNL non-Gaussianities [33] is shown in Figure 1 as the
blue dashed curve. We consider this modified mass func-
tion to represent the maximum abundance of dark mat-
ter halos (repeating the calculations for cosmologies with
gNL or ⌧NL within the current limits [33] leads to smaller
e↵ects than the e↵ects from the current uncertainties in
fNL).
It is also important to note that the mass function

depends on the normalization of the power spectrum;
however, the current percent-level uncertainty of �8 is
negligible for our purposes.
The quantity Ṁb(M, z)) represents the rate of gas in-

flow in halos of mass M at z. It has been predicted in
simple theoretical grounds [38] and has been measured
in hydrodynamical simulations at high redshift [39, 40].
We adopt the maximum gas accretion rate [40],
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where ⌘ = 2.5. Assuming a gas accretion rate as given
in [39] results in a rate that is only slightly smaller (see
Figure 2). If on the other hand we assume that the red-
shift dependence is steeper (i.e., ⌘ > 2.5) as suggested by
high-redshift studies of the growth rate of halos [41, 42],
the gas accretion rate can be higher, however the fallo↵
at high redshift becomes much steeper. Both of these
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Phys. Rev. D 94, 084013 (2016), 1606.07437.
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Muñoz, Phys. Rev. D 94, 023516 (2016), 1605.01405.

[54] D. Gaggero, G. Bertone, F. Calore, R. M. T. Connors,
M. Lovell, S. Marko↵, and E. Storm, Physical Review
Letters 118, 241101 (2017), 1612.00457.

[55] E. D. Kovetz, I. Cholis, P. C. Breysse, and
M. Kamionkowski, Phys. Rev. D 95, 103010 (2017),
1611.01157.

[56] C. Ringeval, Advances in Astronomy 2010, 380507
(2010), 1005.4842.

[57] B. Paczynski, ApJ 304, 1 (1986).
[58] C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod,



Rate of black hole merger events

3

FIG. 2: Red contours depict the quantity
log10[h✏(M, z)iṀg/M�yr

�1], i.e., the logarithm of the
mass accretion rate of gas that makes black holes in halos
of mass M at redshift z. The values of the contours are
from 10�1 � 10�10 in factors of 10 from left to right. Thick
contours correspond to the simulated gas accretion rate of
[40], thin contours correspond to the analytic prediction of
[43]. The dashed grey curves show the number of standard
deviations that correspond to the fluctuations of the power
spectrum that give rise to halos of mass M at z. Black
lines correspond to the minimum halo mass for molecular
hydrogen cooling. The thick black solid line corresponds to
the simulation results of [44] in the case where streaming
velocities of gas are included in the calculation of gas cooling,
while the thin solid black line corresponds to the minimum
mass when relative motion between gas and dark matter is
not considered (see [44]). By redshift z ⇡ 40 the rate of
infalling gas decreases dramatically, while at the same time
the minimum mass of a halo that can harbor star formation
corresponds to extremely rare density peaks.

assumptions have negligible e↵ects to the scope of this
paper.

The quantity h✏(M, z)i represents the fraction of in-
falling gas that turns into black holes. In order to com-
pute an extremely conservative upper bound on the num-
ber of black holes, we assume that all stars formed out
of infalling gas will be converted to black holes that will
merge within the Hubble time at z. We assume that
this function is bracketed from above by the ratio of
stellar mass to baryon mass in dark matter halos, i.e.,
h✏(M, z)i = Mstellar/M⌘, where ⌘ = ⌦b/⌦DM , is the
baryon fraction, and we assume the stellar mass as a
function of host halo mass and redshift is given by ex-
trapolating (beyond z ⇡ 8) the results of [20].

In Figure 2 we show the logarithm of the product
h✏(M, z)iṀg in units of M�yr�1, from 10�1 � 10�15 (in
declining factors of ten from left to right). Thin lines
correspond to the analytic prediction of [43] while thick
lines are the numerical results of [40]. The contours show

that at redshifts z  30 the gas infall rate increases with
mass, and that for a fixed mass it decreases with increas-
ing redshift at z ⇡ 30.
At each redshift z, we integrate Equation 2 from

Mmin(z) to infinity. The lower mass limit of the inte-
gral, Mmin(z), is the minimum halo mass in which stars
can form. This is set by the requirement of the formation
of molecular hydrogen [45, 46]. Recently, it has been ar-
gued that the tight coupling of baryons to photons prior
to recombination gives rise to a velocity component that
becomes important once baryons decouple [47]. Figure
2 shows this e↵ect on the minimum mass: the thin solid
black curve is the standard case where baryons are as-
sumed to follow dark matter, while the thick solid black
curve corresponds to the numerical results of [44] where
there is a velocity di↵erence between dark matter and
baryons.
Since the minimum mass of molecular hydrogen cool-

ing is roughly constant with redshift, star formation is
severely suppressed at increasing redshifts for two rea-
sons: the minimum mass corresponds to extremely rare
peaks in the density field (see dashed grey lines in Fig-
ure 2 that show the rarity of mass scales as a function
of redshift) while at the same time the rate of gas infall
decreases rapidly. The combination of these two e↵ects
introduces a sharp cuto↵ to the abundance of stars be-
yond z ⇡ 40.
Integrating the rate of merger events (Equation 2) from

redshift z to infinity gives the total number of events per
year greater than redshift z (Equation 1). Figure 3 shows
the result of this calculation. The blue curve corresponds
to the maximal mass function [30], a lower Mmin (i.e., ig-
noring the suppressing e↵ects of a relative speed between
dark matter and baryons [44]), and the maximal value of
gas accretion [40]. The dashed blue curve makes the same
assumptions as above, but with a modified mass function
that includes a correction owing to the presence of non-
Gaussianity at the current upper bound of fNL = 43
[33]. The red curve is the opposite of the aforementioned
case, where the mass function assumed is at its minimum
[31], the minimum mass is the largest (including relative
velocities between baryons and dark matter [44]) and a
low gas accretion rate [39]. The shaded area represents
everything in between these two extreme cases.
We define the maximum redshift zmax such that the ob-

served event rate is N (z = zmax) = 1 yr�1. We find that
the maximum redshift of expected gravitational wave
events cannot exceed zmax ⇡ 40. All assumptions lead-
ing to this result are such so that the maximum redshift
is maximized: largest abundance of halos (even includ-
ing current limits on non-Gaussianity), lowest minimum
mass for the formation of stars in halos at high redshifts,
the assumed gas infall in halos is the maximum mea-
sured in numerical simulations, all stars formed in all
halos end up in black hole pairs and all black hole pairs
merge instantaneously. This confluence of maximizing
all assumptions makes the result that the maximum red-
shift of expected gravitational wave sources of zmax ⇡ 40
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Things to take away

1. Black holes as dark matter lead to a depletion of stars in the center and the appearance 
of a ring in the projected stellar surface density profile. 

2. Current observations rule out the possibility that more than 4% of the dark matter is 
composed of black holes with mass of few tens of solar masses. 

3. Next generation of large aperture telescopes could improve these constraints.

4. Future gravitational wave detectors will be sensitive to events from high redshifts. A 
detection of events with redshift greater than 40 must be due to either primordial black 
holes or the presence of non-gaussianity in the spectrum of primordial fluctuations. 


