GW170817: Electromagnetic Wave Observations

Masaomi Tanaka

(National Astronomical Observatory of Japan)

The first observations of GWs from neutron star merger and

The first observations of electromagnetic waves from GW sources

"Multi-messenger" astronomy

http://www.ligo.org

GW170817: Electromagnetic Wave Observations

What was expected

What was observed

(C) NASA (Artists' impression)

Electromagnetic signature from compact binary merger (NS-NS or BH-NS)

• X-ray/gamma-ray

Optical/NIR

Metzger & Berger 2012

Short gamma-ray burst (GRBs)

Opening angle ~ 10 deg => probability ~ a few %

Fong+14

Mass ejection from NS merger: (1) dynamical ejection

Top view

Side view

Tidal disruptionShock heating

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c Sekiguchi+15, 16

Mass ejection from NS merger: (2) post-merger ejection

Fernandez+15

Viscous heating in the diskNeutrino heating

M ~ 10⁻³ - 10⁻² Msun v ~ 0.05c

Radio emission

- Delayed by ~> years

Too faint? (low environment density) Low contamination rate

Hotokezaka & Piran 2015, MNRAS, 450, 1430

Electromagnetic signature from compact binary merger (NS-NS or BH-NS)

• X-ray/gamma-ray

Short GRB: strongly beamed

Radio

Delayed by years Low contamination rate

Optical/NIR
 Delayed by only ~ 1 week
 Isotropic

Neutron-capture nucleosynthesis

s (slow)-process

Inside of stars

r-process nucleosynthesis

r-process nucleosynthesis in dynamical ejecta

~ solar abundance ratios

Dynamical ejecta: Wanajo+14, Radice+16, ... Post-merger ejecta: Just+14, Wu+16, ...

The origin of elements

	NS merger??																	
1 H	Big bang Platin									am Gold He								
³ Li	⁴ Be											5 B	6 	7 N	8 ()	9 F	10 Ne	
11	12	Inside stars, supernovae											14	15	16	17	18	
Na	Mg												Si	P	S	C	Ar	
19	²⁰	21	22	23	24	²⁵	²⁶	27	28	2)	³⁰	³¹	³²	33	³⁴	35	³⁶	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
³⁷	³⁸	39	⁴⁰	41	⁴²	43	⁴⁴	45	₄₀	47	48	⁴⁹	⁵⁰	51	⁵²	53	⁵⁴	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe	
55	56	^{57~71}	72	⁷³	74	⁷⁵	76	77	⁷⁸	⁷⁹	⁸⁰	81	⁸²	⁸³	⁸⁴	⁸⁵	⁸⁶	
CS	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
⁸⁷	⁸⁸	89~103	¹⁰⁴	¹⁰⁵	106	¹⁰⁷	¹⁰⁸	¹⁰⁹	110	¹¹¹	¹¹²	¹¹³	114	¹¹⁵	116	¹¹⁷	¹¹⁸	
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo	
			57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	⁶³ Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu	
			⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96 Cm	⁹⁷ Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

Light curves of kilonova

MT & Hotokezaka 13, MT+14,

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Smooth spectra

Model: MT+17a

Expected spectrum

Extremely broad-line (feature-less) spectra

Distribution of elements

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

Low Ye => stronger r-process

Wanajo+14, Sekiguchi+15,16, Radice+16, Foucart+16

Nucleosynthesis are imprinted in the spectra!!

"Red kilonova" from low Ye ejecta

"Blue kilonova" from high Ye ejecta

NS merger as a possible origin of r-process elements

Event rate

R_{NSM} ~ 10³ Gpc⁻³ yr⁻¹ ~ 1 / 10⁴ yr in 1 galaxy ~ 30 GW events yr⁻¹ (w/ Adv. detectors, < 200 Mpc)

LIGO O1 (arXiv:1607.07456) **R**_{NSM} < 10^4 Gpc⁻³ yr⁻¹

T EM

Enough to explain the r-process abundance in our Galaxy M(Galaxy, r-process) $\sim M_{ej}(r) \times (R_{NSM} \times t_G)$ $\sim 10^{-2} \times 10^{-4} \times 10^{10} \sim 10^4$ Msun

Ejection per event

M_{ej}(r-process) ~ 10⁻² Msun

GW170817: Electromagnetic Wave Observations

• What was expected

What was observed

The initial skymap (only from LIGO/Hanford)

*LIGO/Livingstone data suffer from a glitch noise

Skymap from 3 detectors (LIGO x 2 + Virgo) ==> 30 deg² (~40 Mpc)

LIGO Scientific Collaboration and Virgo Collaboration, 2017

The first detection of GWs from neutron star merger (GW170817)

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

Gamma-ray Fermi & INTEGRAL

~2 sec after the merger

LIGO Scientific Collaboration and Virgo Collaboration, 2017, ApJ

(C) Michitaro Koike (NAOJ/HSC)

Electromagnetic counterpart of GW170817 @ 40 Mpc

2017.08.18-19

2017.08.24-25

Subaru/HSC z +IRSF/SIRIUS H, Ks (Utsumi, MT et al. 2017, PASJ)

Survey with Subaru/HSC

No other transient

Tominaga, MT et al. 2017, PASJ, arXiv:1710.05865

Troja+17

Summary of multi-messenger observations

Abbott+17

X-ray

GRB

Red kilonova

What we learn from multi-messenger astronomy

• Hubble constant

- GW => luminosity distance, EM => redshift
- $H_0 = 70^{+12} 8 \text{ km s}^{-1} \text{ Mpc}^{-1}$

• Speed of GW

- Gamma-rays arrived 1.7 s after the merger (after 130 M light year race => 4 x 10¹⁵ s)
- Iet formation in the merger
 - ~2 sec?
- Physics of neutron stars
 - R ~< 14 km (for 1.4 Msun NS) <= GW phase</p>
- Origin of heavy elements!

Light curves of kilonova

MT & Hotokezaka 13, MT+14,

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Smooth spectra

Model: MT+17a

GW170817: light curves

- Brightness
- Timescale
- SED

Model: MT+17b

Data: Utsumi, MT+17, Drout+17, Pian+17, Arcavi+17, Evans+17, Smartt+17, Diaz+17, Valenti+17, Cowperthwaite+17, Tanvir+17, Troja+17, Kasliwal+17

Clear signature of kilonova!! Ejecta mass ~0.03-0.05 Msun => post-merger ejecta!?

Presence of "blue" kilonova

=> wide range of r-process elements

 $10^{-16} \qquad \qquad 1.5 \qquad \qquad$

See also Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Villar et al. 2017 MT+2017

Neutron star physics <= GW + EM combination

Tidal deformability Λ ~ (R/M)⁵ (Tidal deformation accelerates GW phase)

See also shibata+17

NS merger as an origin of r-process elements

Event rate

R_{NSM} ~ 10³ Gpc⁻³ yr⁻¹ ~ 1 / 10⁴ yr in 1 galaxy ~ 30 GW events yr⁻¹ (w/ Adv. detectors, < 200 Mpc)

Ejection per event

M_{ej}(r-process) ~ 10⁻² Msun

 GW170817
 EM counterpart

 RNSM ~ 1500+3000 -1200 Gpc-3 yr-1
 ~0.03 Msun

Enough to explain the r-process abundance in our Galaxy M(Galaxy, r-process) ~ $M_{ej}(r) \times (R_{NSM} \times t_G)$ ~ $10^{-2} \times 10^{-4} \times 10^{10} \sim 10^{4}$ Msun

Many open questions

- Why (weak) gamma-ray bursts?
- Why relatively early radio?
- Why relatively late X-ray?
- Why high ejecta mass (>0.03 Msun, not 0.01 Msun)?
- What is the abundance patterns?
 Is it consistent with solar abundances?
- What is a delay time?
- What happens for different total masses, mass ratios, and BH-NS merger?

Need more observations with different masses and viewing angles

Extremely weak gamma-rays

An interpretation for gamma/X/radio

- Jet + cocoon
- Off-axis viewing angle

weak gamma-rays X-ray & radio afterglow

Galactic stars: "Universality" of r-process abundances

Sneden+2008

NS mergers reproduce solar abundances?? => need a wide range of Ye

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

=> more events with different viewing angles!

Shibata+17

Summary

• GW170817

- Wide range of EM signals
- Opt/NIR emission consistent with (blue+red) kilonova
- Confirmation of r-process in NS merger
- Open questions and future prospects
 Origins of gamma-rays, X-rays, and radio emission
 Mechanism of high mass ejection
 - Abundance patterns (solar parttern?)
 - More events with different masses, mass ratios, viewing angles
 - BH-NS mergers