Origin, evolution and signatures of Primordial Black Holes as Dark Matter

JGB & S. Clesse, Sci. Am. July 2017, 39 (review) JGB & Ruiz Morales, Phys. Dark Univ. 18 (2017) 47 Ezquiaga, JGB & Ruiz Morales, arXiv:1705.04861, PLB JGB, J.Phys.Conf 840 (2017) 012032 (scenario) JGB & S. Nesseris, Phys. Dark Univ. 18 (2016) 123 S. Clesse & JGB, arXiv:1610.08479, PDU accepted JGB, M. Peloso & C. Unal, JCAP 1709 (2017) 013 JGB, M. Peloso & C. Unal, JCAP 1612 (2016) 031 S. Clesse & JGB, Phys Dark Univ 10 (2016) 002 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

Juan García-Bellido 13th November 2017 IPMU Tokyo

Outline

- The discovery of 5 BHB by AdvLIGO has opened a new Era of Astronomy
- Is Cold Dark Matter made of PBH ?
- Quantum origin => Peaks in curvature
- Astrophysical signatures
- Cosmological signatures
- Test PBH scenario with GW emission
- Conclusions

"for decisive contributions to the LIGO detector and the observation of gravitational waves"

Reiner Weiss **Barry C. Barish Kip S. Thorne**

LIGO/VIRGO

Black Holes of Known Mass

GW170814 detected by LVC

Gravitational Wave Astronomy

- AdvLIGO + VIRGO (+KAGRA, +INDIGO)
- GW150914 = $36 + 29$ M_o BH binary
- LVT151012 = 23 + 13 M_o "candidate"
- GW151226 = 14 + $8 M_{\odot}$ BH binary
- GW170401 = $32 + 20$ M_o BH binary
- GW170814 = $31 + 25 M_{\odot}$ BH binary
- Expected 10-150 events/yr/Gpc³
- AdvLIGO+ can map the mass and spin Massive BH (0.1 M_o $< M_{BH} < 150 M_{sun}$)

Spin distribution of LIGO BHB

 M_{PBH}/M_{\odot}

AdvLIGO BHB event rate

Clesse, JGB (2016)

CGB model

Massive PBH from Inflation as DM

Space-time ripples

What models of Inflation produce PBH?

Critical

Higgs Inflation

Concrete realization: PBH in Critical Higgs Inflation

Ezquiaga, JGB, Ruiz Morales (2017)

$$
S = \int d^4x \sqrt{g} \left[\left(\frac{1}{2\kappa^2} + \frac{\xi(\phi)}{2} \phi^2 \right) R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \lambda(\phi) \phi^4 \right]
$$

$$
\lambda(\phi) = \lambda_0 + b_\lambda \ln^2(\phi/\mu) ,
$$

$$
\xi(\phi) = \xi_0 + b_\xi \ln(\phi/\mu) ,
$$

$$
\frac{d\varphi}{d\phi} = \frac{\sqrt{1 + \xi(\phi) \phi^2 + 6 \phi^2 (\xi(\phi) + \phi \xi'(\phi)/2)^2}}{1 + \xi(\phi) \phi^2}
$$

RGE rumming of Higgs quartic coupling

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)
0.15

RGE running of Higgs quartic coupling Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014) $M_h = 126.5$ GeV (dashed) $M_h = 124.5$ GeV (dotted) $M_t = 171.0 \text{ GeV}$ $0.10\,$ Higgs quartic coupling $\lambda(\mu)$ $\alpha_s(M_Z) = 0.1184$ Froggatt, Nielsen ('79) $\lambda_{\rm eff} = 4V/h^4$ 0.05 λ in $\overline{\text{MS}}$ 0.00 β_{λ} -0.05 10^6 10^8 10^{10} 10^{12} 10^{14} 10^{16} 10^{18} 10^{20} $10⁴$ 10^{2} RGE scale μ or h vev in GeV
Concrete realization: CHI model

Ezquiaga, JGB, Ruiz Morales (2017)

$$
S = \int d^4x \sqrt{g} \left[\left(\frac{1}{2\kappa^2} + \frac{\xi(\phi)}{2} \phi^2 \right) R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \lambda(\phi) \phi^4 \right]
$$

$$
\lambda(\phi) = \lambda_0 + b_\lambda \ln^2(\phi/\mu) ,
$$

$$
\xi(\phi) = \xi_0 + b_\xi \ln(\phi/\mu) ,
$$

$$
V(x) = \frac{V_0 (1 + a \ln^2 x) x^4}{(1 + c (1 + b \ln x) x^2)^2} \qquad x = \phi/\mu
$$

 $V_0 = \lambda_0 \mu^4/4$, $a = b_\lambda/\lambda_0$, $b = b_\xi/\xi_0$ and $c = \xi_0 \kappa^2 \mu^2$

 \mathcal{X}

 \boldsymbol{x}

Primordial Spectrum for PBH

Primordial Spectrum for PBH

CMB & LSS

Constraints

Ezquiaga, JGB, Ruiz Morales (2017)

$$
A_s^2 = 2.14 \times 10^{-9}
$$

\n
$$
n_s = 0.952
$$

\n
$$
r = 0.043
$$

\n
$$
dn_s/d\ln k = -0.0017
$$

\n
$$
\lambda_0 = 2.3 \times 10^{-7}
$$

\n
$$
\xi_0 = 7.55
$$

\n
$$
b_\lambda = 1.2 \times 10^{-6}
$$

\n
$$
\xi_\ell^2 \mu^2 = 0.102
$$

Ezquiaga, JGB, Ruiz Morales (2017)

$$
V(x \gg x_c) \simeq V_0 \frac{a}{(bc)^2} = \frac{1}{4\kappa^4} \frac{b_{\lambda}}{b_{\xi}^2} \ll M_P^4
$$

(RGE) $b_{\lambda} = 1.2 \times 10^{-6} b_{\xi} = 11.5$

Reheating after CHI

$$
\rho_{\text{end}} = 2.8 \times 10^{63} \text{ GeV}
$$

$$
T_{\text{rh}} = 3 \times 10^{15} \text{ GeV}
$$
 (for $g_* = 106.75$)

Massive Primordial Black Holes

- These are massive black holes with 10^{-2} M_o < M_{PBH} < 10^{2} M_o, which cluster and merge and could resolve some of the most acute problems of ΛCDM paradigm.
- ΛCDM N-body simulations never reach the 100 M_o particle resolution, so for them PBH is as good as PDM.
- PBH DM paradigm naturally incorporates all properties of collisionless CDM scenario on large scales but differs on small scales.

Correlating Black Hole Mass to Stellar System Mass

Distinguish MPBH from Stellar BH

- Accretion disks around SBH
- Distribution of spins misaligned
- Mass distribution ≠ IMF
- SBH kicks at formation vs static PBH
- Galaxy formation rate \rightarrow gal. seeds
- Microlensing events of long duration
- GAIA anomalous astrometry
- CMB distortions with PIXIE/PRISM
- Reionization faster in the past
- N-body simulations below 10² M_o

Microlensing

Large Magellanic Cloud

$$
A = \frac{2 + u^2}{u\sqrt{4 + u^2}} \qquad u = \frac{r}{r_E} \qquad \text{amplification}
$$
\n
$$
\frac{1}{Dt} = \frac{r_E}{v} = \frac{\sqrt{4GM_p d}}{v} \qquad \text{average } \frac{1}{2} \text{ crossing}
$$
\n
$$
M_p = 100 \text{ M}_{\odot} \quad \text{where} \quad \frac{1}{Dt} = 4 \text{ years}
$$
\n
$$
M_p = 10 \text{ M}_{\odot} \quad \text{where} \quad \frac{1}{Dt} = 1.23 \text{ years}
$$
\n
$$
M_p = 1 \text{ M}_{\odot} \quad \text{where} \quad \frac{1}{Dt} = 5 \text{ months}
$$
\n
$$
M_p = 0.1 \text{ M}_{\odot} \quad \text{where} \quad \frac{1}{Dt} = 1.5 \text{ months}
$$
\n
$$
M_p = 0.01 \text{ M}_{\odot} \quad \text{where} \quad \frac{1}{Dt} = 2 \text{ weeks}
$$

Signatures: Parallax of PBH

Signatures: Parallax of PBH

Constraints on clustered PBH JGB, Clesse (2017) Uniform $(f_{\text{PRH}}=1)$ *PDF*(*M*) = 1 $M\sqrt{2\pi\sigma^2}$ exp - $\log^2(M/\mu)$ $\pi \sigma^2$ exp $2\sigma^2$ μ \overline{M} = μ exp(1 $\mu \exp(\frac{1}{2}\sigma^2)$

Clustered $(N_{cl} = 100-1000)$ new distribution:

$$
\mu_{cl} = N_{cl} \bar{M}
$$
 $\sigma_{cl}^2 = (e^{\sigma 2} - 1)/N_{cl}$

Missing satellite

Too-big-to-fail Problems ΛCDM

Gravitational slingshot effect

Close encounters of a star with MPBH @ 100 km/s relative motion is enough to expel the star from the stellar cluster.

It may explain large M/L ratios of dSph by ejection of stars in the cluster, $v > v_{esc}$.

DES Dwarf spheroidals

DES Dwarf spheroidals

Eridanus II dwarf spheroidal

Discussion

Signatures of PBH as DM

- Seeds of galaxies at high-z
- Reionization starts early (Kashlinsky)
- Larger galaxies form earlier than ΛCDM
- Massive BH at centers QSO @ z>6
- Growth of structure on small scales
- Ultra Luminous X-ray Transients
- MPBH in Andromeda (Chandra)
- GW from inspiraling $M < M_{\odot}$ BH (LIGO)
- Substructure and too-big-to-fail probl.
- Total integrated mass = Ω_{M}

GW bursts from close encounters

GW bursts

GW bursts

Stochastic Background Grav. Waves

The Gravitational Wave Spectrum

Sensitivity of future GW antenas

Stochastic Background from MPBH

Conclusions

• Massive Primordial Black Holes are the perfect candidates for collisionless CDM, in excellent agreement with CMB and LSS observations.

- MPBHs could also resolve some of the most acute problems of ΛCDM paradigm, like early structure formation and substructure problems.
- MPBHs open a new window into the Early Universe, ~ 20-40 efolds before end inflation.
- There are many ways to test this idea in the near future from CMB, LSS, X-rays and GW.
- LISA/PTA could detect the stoch. background from MPBH merging since recombination.

Fluctuations CIB & X-ray Background

Kashlinsky (2016)

Kashlinsky (2016)

Diffuse

Gamma-ray Background

Fermi-LAT Point Sources **EPBH?**

Wavelet transformation

Bartels et al. 2016

Non-Poissonian noise

Lee et al. 2016

Chandra Deep Field South

Chandra Deep Field South (2017)