Primordial black holes from nontopological solitons

PBH Focus Week - University of Tokyo IPMU

E. Cotner¹

¹Department of Physics and Astronomy University of California, Los Angeles

Work based on PRL 119 (2017) no.3, 031103 [arXiv:1612.02529] and PRD 96 (2017) no.10, 103002 [arXiv:1706.09003] (EC, Alexander Kusenko), and article in preparation (EC, Alexander Kusenko, and Volodymyr Takhistov)

Outline

Primordial black holes

Background Nontopological Solitons Physics of Q-ball clustering Production of PBH Work to be done Summary

Background

Outline

Primordial black holes

Background

Nontopological Solitons Physics of Q-ball clustering Production of PBH Work to be done Summary

Background

History

- Primordial black holes (PBH) were first proposed by Zeldovich, Novikov [1], Hawking [2], and Carr and Hawking [3]
- Fundamentally different from stellar BH created from the collapse of a star
- Density perturbations within the horizon can decouple from the Hubble expansion and recollapse, forming black holes with mass on the order of the horizon mass
- ► If perturbations enter the horizon during a radiation-dominated era, they must be over a critical density contrast δ_c ~ 1 (estimates vary) to collapse
- ► If perturbations are within the horizon during a matter-dominated era, they can be amplified: $\delta(t) = \delta_0 a(t) = \delta_0 (t/t_0)^{2/3}$, increasing the probability of collapse

Primordial black holes oo●oooooooooooooooooooooooooooooooooo	D		
Background			

Experimental constraints

Figure 1: Summary of PBH fraction constraints assuming monochromatic mass distribution. (Kawasaki et. al. 2016 [4], Carr, Kuhnel, Sandstad 2016 [5], Inomata et. al. 2017 [6], Inoue, Kusenko 2017 [7], Fuller, Kusenko, Takhistov 2017 [8], Niikura et. al. 2017 [9]).

Primordial black holes 0000000000000000000000000000 00000000		
Background		

Sampling of production mechanisms

There are multiple different physical mechanisms which can create these PBHs

- Perturbations from inflation (Carr, Lidsey, 1993 [10], Kawasaki, Kusenko, Tada, Yanagida 2016 [4], Clesse, Garcia-Bellido 2015 [11], Garcia-Bellido, Ruiz Morales 2017 [12])
- Shrinking of cosmic strings (Hawking 1989 [13])
- Collision of bubble walls during 1st-order PT (Crawford, Schramm 1982 [14], Hawking, Moss, Stewart 1982 [15], La 1989 [16])
- Soft equation of state (*p* = *w*ρ with *w* ≪ 1/3) (Polnarev, Khlopov 1985 [17], Khlopov 1980 [18])

Primordial black holes 000000000000000000000000000000000000		
Background		

Motivation - issues

- A lot of models typically assume source of density perturbations are due to fluctuations from inflation
- Specifically requires blue power spectrum (n_s > 1) or positive running of the coupling (d ln n_s/dk > 0) to get large power on short scales, which is disfavored by CMB
- Requires modifications to inflaton potential to get sufficient PBH abundance (flat regions/inflections)
- Is there a way around this? Is there another source of perturbations which is decoupled from inflation?

Primordial black holes 000000000000000000000000000000000000		
Background		

Motivation - solution

- Amplitude of Poisson fluctuations scales as $1/\sqrt{N}$, which are heavily suppressed in typical thermal bath: $N \sim \rho_R V_H / T \sim 10^{-3} (M_p / T)^3 \approx 10^{64} (T / \text{MeV})^{-3}$
- ► But in matter dominated era, "particle" number depends on "particle" mass: $N \sim \rho_M V_H/m$
- Solitons can be created in the early universe with very large masses due to composite nature, leading to smaller number of "particles" per horizon (10⁴ ~ 10⁸)
- Fragmentation of a scalar condensate produces its own density fluctuations from Poisson noise - no modifications to inflaton required

Primordial black holes 000000000000000000000000000000000000		
Background		

Motivation - solution

- Nonlinear mass-charge relationship (*M* ∝ *Q*^α, α < 1) leads to further density perturbations, depending on the way the charges are distributed amongst the solitons</p>
- Highly chaotic fragmentation scenario leads to nonuniform distribution of matter and large density perturbations
- Perturbations are further amplified by growth during matter/soliton dominated epoch (δ ∝ a), and eventually collapse into black holes (δ > δ_c)
- Many theories containing scalar fields (SUSY scalars, axion, inflaton, etc.) allow for creation of such solitons in the early universe, making this a fairly general mechanism

Primordial black holes ococococococococococo 0000 00000 0000000 0000000 0000000		
Background		

Summary of mechanism

- Scalar field reaches large vev during/after inflation (Affleck-Dine mechanism for charged scalars, misalignment for axions, coherent oscillations for inflaton...)
- $\blacktriangleright\,$ Condensate fragments into $10^4 \sim 10^8$ solitons per horizon of varying charge
- Stochastic/chaotic fragmentation event leads to large number/energy density fluctuations
- Since solitons are NR matter, the universe enters a MD era; soliton perturbations begin to form clusters
- Some fraction of soliton clusters collapse and form PBHs
- Solitons decay (destabilized through broken U(1), decay/evaporation to lighter particles, etc.)
- PBHs survive to present day

Primordial black holes ocoococococococococo 0000 00000 00000000 00 00000000 000000
Background

<u> </u> = १९९

Primordial black holes 000000000000000000000000000 000000 000000		
Background		

Primordial black holes oooooooooooooooooooooooooooooooooooo		
Background		

ł

Primordial black holes oooooooooooooooooooooooooooooooooooo
Background

Primordial black holes oocoocoocoocoooo 0000 00000 0000000 00000000 000000
Background

rimordial black holes 000000000000000000000000000000000000

Background

Some intuition – in pictures

▶ ≣ ୬९୯

Primordial black holes ocoococococococo 0000 00000 0000000 0000000 0000000
Background

Primordial black holes
0000000000000000000
0000
000000
00000000
00
Background

æ

Primordial black holes ocoococococococococo 0000 00000 0000000 00000000 000 000000
Background

Primordial black holes 000000000000000000000000000000000 000000	00		
Background			

Primordial black holes oooooooooooooooooooooooooooooooooooo	
Background	

Primordial black holes 2000000000000000000000 200000 200000000
Background

Primordial black holes 000000000000000000 00000 0000000 000000	
Background	

Summary of mechanism

Figure 2: Diagram of cosmological evolution of the energy density of different species of interest. Inset in upper right is a close-up of region $t_Q < t < \tau_Q$, where structure growth and Q-ball decay occurs.

Nontopological Solitons

Outline

Primordial black holes

Background Nontopological Solitons

Physics of Q-ball clustering Production of PBH Work to be done Summary

Nontopological Solitons

Solitons

- Solitons are stable, localized solutions to field equations field configurations with a particle-like character
- Come in two flavors: topological and nontopological:
- Topological:
 - Gain stability from a topological charge: i.e. winding/Chern-Simons number (Skyrmions, hopfions)
 - Typically associated with gauge fields: e.g. hedgehog/monopole solutions
- Nontopological (Q-balls):
 - ▶ Gain stability due to internal symmetry and energy conservation: e.g. field with U(1) symmetry, mass *m* and conserved charge *Q* can form soliton with mass *M* < *mQ*
 - Symmetry can be either global or gauged
 - Pseudo-stable solitons can form from systems that have approximate symmetry at low energy (e.g. oscillons/oscillitons/axitons) due to semi-conserved adiabatic charge (Kasuya, Kawasaki, Takahashi 2002 [19], Kawasaki, Takahashi, Takeda 2015 [20])

Nontopological Solitons

Q-balls - theory

- Q-balls have two fairly general requirements for existence:
 - Unbroken global/local symmetry and conserved charge

 $(\phi \rightarrow e^{i \mathbf{T} \cdot \boldsymbol{\theta}} \phi \implies \exists J^{\mu} \text{ s.t. } \partial_{\mu} J^{\mu} = 0)$

- Region of potential exists where field energy is suppressed relative to equivalent energy of free particles (∃ φ_{*} s.t. V(φ_{*}) < m²|φ_{*}|²)
- Gives rise to time-dependent (oscillatory) localized solutions of the field equations $\phi(\mathbf{x}, t) = \phi(\mathbf{x})e^{i\omega t}$ with mass less than the sum of the masses of same number of free particles (M < mQ)

Figure 3: Q-ball simulation by Kasuya, Kawasaki [21]

Nontopological Solitons

Q-balls - production, evolution and interactions

- Form very naturally in supersymmetric extensions to the SM due to flat directions in scalar potential, and large number of scalar superpartners (squarks and sleptons) (Kusenko 1997 [22])
- Coherent scalar condensate $\Phi(\mathbf{x}, t) = \phi e^{i\theta}$ created from Affleck-Dine mechanism, where field gets large vev during inflation by jumping up the potential
- ▶ Once $V''(\phi) < \dot{\theta}^2$, condensate develops an instability and fragments into Q-balls
- Can be destabilized by breaking the symmetry through higher-dim operators, coupling to lighter degrees of freedom, etc.
 - Decay of Q-balls could also aid in baryo(lepto)-genesis
- ► Global U(1) symmetry ⇒ only short-range, contact interactions acts like pressureless dust
- Gauging the symmetry can create some interesting effects (supercurrents/magnetic dipoles, maximum size) and introduces long-range interactions (ignore these types for now)

Physics of Q-ball clustering

Outline

Primordial black holes

Background Nontopological Solitons Physics of Q-ball clustering Production of PBH Work to be done Summary

Physics of Q-ball clustering

Derivation of PDF from charge distribution I

Assume Q-ball charge Q is a random variable with PDF $f_Q(Q)$; $\int dQ f_Q = 1$. Mass of a collection of N Q-balls (each with mass $\Lambda |Q|^{\alpha}$) is

$$M = \sum_{i=1}^{N} \Lambda |Q_i|^{\alpha}$$
(1)

where $\Lambda^4 \sim V(\langle \phi \rangle)$ and $\alpha = 3/4$ for SUSY "flat direction" (FD) Q-balls, $\alpha = 2/3$ for "curved direction" (CD) Q-balls.

Physics of Q-ball clustering

Derivation of PDF from charge distribution II

PDF to find mass *M* composed of *N* Q-balls is given by

$$f_{M}(M|N) = \left(\prod_{i=1}^{N} \int dQ_{i} f_{Q}(Q_{i})\right) \delta\left(M - \sum_{i=1}^{N} \Lambda |Q_{i}|^{\alpha}\right)$$
(2)
$$\tilde{f}_{M}(\mu|N) = \left[\int dQ' e^{i\mu\Lambda |Q'|^{\alpha}} f_{Q}(Q')\right]^{N}$$
(3)
$$f_{Q}(Q) = \delta(Q - Q_{0}) \implies f_{M}(M|N) = \delta(M - NM_{0}); \qquad M_{0} \equiv \Lambda Q_{0}^{\alpha}$$
(4)

Will assume monochromatic charge distribution for simplicity. Now we need to find how *N* is distributed! p(x, y) = p(x|y)p(y)

Physics of Q-ball clustering

Derivation of PDF from charge distribution III

Given N particles uniformly distributed in a box of volume L^3 , what is probability to find N < N particles contained within subvolume $V \ll L^3$?

$$p(N|V) = {\binom{N}{N}} {\left(\frac{V}{L^3}\right)^N} {\left(1 - \frac{V}{L^3}\right)^{N-N}}$$
(Binomial dist.) (5)
$$\xrightarrow{N,L \to \infty} e^{-nV} \frac{(nV)^N}{N!}, \quad n = N/L^3$$
(Poisson dist.) (6)

Distribution normalized to unity, independent of n or V.

Physics of Q-ball clustering

Derivation of PDF from charge distribution IV

- Results in joint distribution F_Q(M, N|V) = f_M(M|N, V)p(N|V) (mixed continuous/discrete distribution), normalized for any V
 - Follows from "chain rule" of probability: P(a, b|c) = P(a|b, c)P(b|c)
- *F_Q* gives probability density (in *M*) for finding *N* Q-balls with total mass *M* within *fixed volume V*
- Need a method for "summing" over V to account for contributions from all relevant length scales
- Must devise a procedure to coarse-grain/smear out contributions from single scale V

Physics of Q-ball clustering

Derivation of PDF from charge distribution V

$$\sum_{\{V\}} g(V) = g(V_1) + g(V_2) + \dots = \sum_{i=1}^{l_{max}} g(V_i) \approx \int_1^{l_{max}} di g(V_1/\chi^{i-1})$$
$$= \frac{1}{\ln \chi} \int_{V_{min}}^{V_1} \frac{dV}{V} g(V),$$
$$\chi \sim \text{few is factor related}$$
to degree of coarse-graining. Will assume $\chi = e$ for simplicity.

= 990

・ロン・西方・ ・ ヨン・ ヨン・

Production of PBH

Outline

Primordial black holes

Background Nontopological Solitons Physics of Q-ball clustering **Production of PBH** Work to be done

Summary

Production of PBH

Density perturbations

Fluctuations in the Q-ball distribution of mass M contained within volume V give rise to a local density contrast

$$\delta_0(M, V) = \frac{\delta \rho}{\rho} = \frac{\rho - \langle \rho \rangle}{\langle \rho \rangle} = \frac{M/V}{\langle \rho_Q \rangle} - 1$$
(9)

= nan

where $\langle \rho_Q \rangle = \langle M \rangle / V = M_0 n$ is average energy density of Q-balls.

- Fluctuations grow proportional to scale factor during MD era: $\delta(t_R) = \delta_0 (t_R/t_Q)^{2/3}.$
- ▶ Probability/fraction of collapse in MD era is given to be $\beta = \gamma \delta_0^{13/2} (M/M_{hor})^{13/3}$, with $\gamma \approx 0.02$ (Polnarev, Khlopov 1985 [17]).
- Ensure that only overdensities with δ(t_R) > δ_c are counted towards PBH production ⇒ β ← β × [δ(t_R) ≥ δ_c]

Primordial black holes ○○○○○○○○○○○○○○○○○○○○○ ○○○○○○ ○○●●○○○○○ ○○		
Production of PBH		

PBH density I

We calculate the average PBH energy density at redshift $a(t) > a(\tau_Q)$ by computing the average Q-ball energy at time t_f weighted by β to find the fraction that *will go into* PBHs when they form, then redshifting this appropriately:

$$\langle \rho_{\mathsf{BH}} \rangle = \left(\frac{a(t_f)}{a(t)} \right)^3 \int \frac{dV}{V} \langle \beta M \rangle \frac{V_1}{V} \frac{1}{V_1}$$
(10)
$$= \left(\frac{a(t_f)}{a(t)} \right)^3 \sum_{N=0}^{\infty} \int \frac{dV}{V} \int dM F_Q \frac{\beta M}{V}$$
(11)

Primordial black holes ○○○○○○○○○○○○○○○○○○○○○ ○○○○○○ ○○○○○○ ○○○○○○		
Production of PBH		

PBH density II

Differential density spectrum as function of M can by found by dropping integral over M, and the differential DM fraction found by dividing by ρ_{DM} :

$$\frac{d\langle\rho_{\mathsf{BH}}\rangle}{dM} = \left(\frac{a(t_f)}{a(t)}\right)^3 \sum_{N=0}^{\infty} \int \frac{dV}{V} F_Q \frac{\beta M}{V} \qquad \frac{df_{\mathsf{PBH}}}{dM} = \frac{1}{\rho_{\mathsf{DM}}} \frac{d\langle\rho_{\mathsf{BH}}\rangle}{dM}$$
(12)

Can get rough idea of contribution to dark matter fraction by looking at first equation, and exact contribution by looking at second:

$$f_{\mathsf{PBH}}(M) = M \frac{df_{\mathsf{PBH}}}{dM} \qquad f_{\mathsf{PBH}} = \int dM \frac{df_{\mathsf{PBH}}}{dM} \tag{13}$$

Production of PBH

Radiation density

Need to ensure that thermal history is self-consistent:

Before/after the MD era: standard cosmology:

$$ho_R(t < t_Q) pprox rac{\pi^2 M_p^2}{327 t^2}$$

At beginning of MD era:

$$\rho_{R} = \rho_{Q} \implies \frac{\pi^{2} M_{p}^{2}}{327 t_{Q}^{2}} = \langle \rho_{Q} \rangle \left(\frac{a_{f}}{a_{Q}} \right)^{3} e^{-t_{Q}/\tau_{Q}}$$

- ► During MD era: $\rho_R = \left[\rho_{R0} + \rho_{X0} \int_{x_0}^x dx' \, z(x') e^{-x'}\right] z^{-4}, \quad x = \Gamma_X t, \ z = (x/x_0)^{2/3}$ (Scherrer, Turner 1985 [23])
- ► Matching boundary conditions gives us $e^{r_R - r_Q} \left(\frac{r_Q}{r_R}\right)^{2/3} \left[1 + r_R^{-2/3} \Gamma\left(\frac{5}{3}, r_Q, r_R\right)\right] = 1, \quad r_i = t_i / \tau_Q$

Production of PBH

Results

Figure 4: Plot of $f_{\mathsf{PBH}}(M)$ together with constraints. Dark matter fraction for each curve is 1, 0.2, and 0.001 (left to right). Reheat temperature after Q-ball decay approaches BBN bound as $M_{\mathsf{BH}} \gtrsim 1 \, \mathrm{M}_{\odot}$.

Production of PBH

Preliminary oscillon results I

- PBH production from oscillons (solitons made of real scalar fields) is also possible (subject to some constraints).
 - Oscillons don't have conserved charge, so they are only approximately stable (have approximately conserved adiabatic charge (Kasuya, Kawasaki, Takahashi 2002 [19], Kawasaki, Takahashi, Takeda 2015 [20])
 - Arguments involving slicing charge up into different configurations doesn't work - need to look at energy constraints
 - Institute cutoff in density spectrum so that average density never exceeds energy density of field before fragmentation
 - Requires parametric resonance to amplify unstable wave modes, which become oscillons
- Inflaton is ideal candidate oscillons produced in coherent oscillations after inflation ends, avoids issue of fine-tuning matter domination to coincide with soliton decay

Primordial black holes		
Production of PBH		

Preliminary oscillon results II

Figure 5: Comparison of predicted DM fraction of PBH generated from oscillons with observational constraints.

	m_{ϕ} (GeV)	$t_i = 1/H_i$ (sec)	Γ _/ (GeV)	t _R (sec)	T _{RH} (GeV)	f _{DM}	peak M _{BH} (g)	
	5×10^{-5}	2.7×10^{-18}	9.8×10^{-11}	6.7×10^{-15}	4×10^3	1.0	$3.5 imes 10^{20}$	
	1.5×10^{-12}	3.3×10^{-11}	9.3×10^{-17}	7.1 × 10 ⁻⁹	4.3	0.23	1 × 10 ²⁷	
	9×10^{-19}	4.2×10^{-5}	1.9×10^{-22}	3.4×10^{-3}	5.6×10^{-3}	0.013	$1.3 imes 10^{33}$	
ľ				-	•			

æ

Work to be done

Outline

Primordial black holes

Background Nontopological Solitons Physics of Q-ball clustering Production of PBH

Work to be done

Summary

Primordial black holes ○○○○○○○○○○○○○○○○○○○○○ ○○○○○ ○○○○○○○○		
Work to be done		

Work to be done

- Apply to models of scalar fields this mechanism could work with
 - Inflaton, axion, AD with SUSY, etc.
- Verify mechanism through numerical simulation could be difficult since PBH only form in very small fraction of horizons.
- Investigate possible GW wave signal from early PBH production.
- Investigate effects of angular momentum during collapse and high spin (Harada, Yoo, Kohri, Nakao 2017 [24])

Primordial black holes
00000000000000000000000000000000000000
Summary

Outline

Primordial black holes

Background Nontopological Solitons Physics of Q-ball clustering Production of PBH Work to be done Summary

Primordial black holes		
000000000000000000000000000000000000000		
00000		
0000000		
õõooo		
Summary		

Summary

- Scalar field fragmentation mechanism generates solitons in early universe
- Distribution of solitons can create very large density fluctuations in the early universe
- Leads to copious PBH production
- Advantages:
 - Possible with a variety of bosonic fields, including sfermions, inflaton, axion...
 - Does not require fluctuations from inflation to work
 - Fairly general mechanism, has potential to create PBH with sufficient abundance to explain DM

Summary

Summary

References I

- Ya. B. Zel'dovich and I. D. Novikov. The hypothesis of cores retarded during expansion and the hot cosmological model. Sov. Astron., 10:602, 1967.
- [2] S. W. Hawking. Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc., 152:75, 1971.
- [3] Bernard J. Carr and S. W. Hawking. Black holes in the early Universe. Mon. Not. Roy. Astron. Soc., 168:399–415, 1974.
- [4] Masahiro Kawasaki, Alexander Kusenko, Yuichiro Tada, and Tsutomu T. Yanagida. Primordial black holes as dark matter in supergravity inflation models. *Phys. Rev.*, D94(8):083523, 2016.
- [5] Bernard Carr, Florian Kuhnel, and Marit Sandstad. Primordial Black Holes as Dark Matter. *Phys. Rev.*, D94(8):083504, 2016.
- [6] Keisuke Inomata, Masahiro Kawasaki, Kyohei Mukaida, Yuichiro Tada, and Tsutomu T. Yanagida. Inflationary Primordial Black Holes as All Dark Matter. 2017.

[7] Yoshiyuki Inoue and Alexander Kusenko. New X-ray bound on density of primordial black holes. JCAP, 1710(10):034, 2017.

References II

- [8] George M. Fuller, Alexander Kusenko, and Volodymyr Takhistov. Primordial Black Holes and r-Process Nucleosynthesis. *Phys. Rev. Lett.*, 119(6):061101, 2017.
- [9] Hiroko Niikura, Masahiro Takada, Naoki Yasuda, Robert H. Lupton, Takahiro Sumi, Surhud More, Anupreeta More, Masamune Oguri, and Masashi Chiba. Microlensing constraints on primordial black holes with the Subaru/HSC Andromeda observation. 2017.
- [10] B. J. Carr and James E. Lidsey. Primordial black holes and generalized constraints on chaotic inflation. *Phys. Rev. D*, 48:543–553, Jul 1993.
- [11] SĂ@bastien Clesse and Juan GarcÃa-Bellido. Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies. *Phys. Rev.*, D92(2):023524, 2015.
- [12] Juan Garcia-Bellido and Ester Ruiz Morales. Primordial black holes from single field models of inflation. *Phys. Dark Univ.*, 18:47–54, 2017.
- [13] S. W. Hawking. Black holes from cosmic strings. *Physics Letters B*, 231(3):237 – 239, 1989.

References III

- [14] M. Crawford and D. N. Schramm. Spontaneous generation of density perturbations in the early universe. *Nature*, 298:538 – 540, 1982.
- [15] S. W. Hawking, I. G. Moss, and J. M. Stewart. Bubble collisions in the very early universe. *Phys. Rev. D*, 26:2681–2693, Nov 1982.
- [16] D. La and P. J. Steinhardt. Bubble percolation in extended inflationary models. *Physics Letters B*, 220(3):375 – 378, 1989.
- [17] A. G. Polnarev and M. Yu. Khlopov. COSMOLOGY, PRIMORDIAL BLACK HOLES, AND SUPERMASSIVE PARTICLES. Sov. Phys. Upp., 28:213–232, 1985. [Usp. Fiz. Nauk145,369(1985)].
- [18] M. Yu. Khlopov and A. G. Polnarev. Primordial black holes as a cosmological test of grand unification. *Physics Letters B*, 97(3):383 – 387, 1980.
- [19] S. Kasuya, M. Kawasaki, and Fuminobu Takahashi. I-balls. Phys. Lett., B559:99–106, 2003.

References IV

- [20] Masahiro Kawasaki, Fuminobu Takahashi, and Naoyuki Takeda. Adiabatic Invariance of Oscillons/I-balls. *Phys. Rev.*, D92(10):105024, 2015.
- [21] S. Kasuya and M. Kawasaki. Q ball formation through Affleck-Dine mechanism. *Phys. Rev.*, D61:041301, 2000.
- [22] Alexander Kusenko. Solitons in the supersymmetric extensions of the standard model. *Phys. Lett.*, B405:108, 1997.
- [23] Robert J. Scherrer and Michael S. Turner. Decaying particles do not "heat up" the universe. *Phys. Rev. D*, 31:681–688, Feb 1985.
- [24] Tomohiro Harada, Chul-Moon Yoo, Kazunori Kohri, and Ken-Ichi Nakao. Spins of primordial black holes formed in the matter-dominated phase of the Universe. *Phys. Rev.*, D96(8):083517, 2017.

Summary

Backup I

Figure 6: Fraction of Q-ball energy density that goes into PBH.

∢ 臣 ≯

크

Backup II

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > のへで

Primo 0000 0000 0000 0000	rdial black holes 000000000000000000000000000000000000		
Sumn	nary		

Backup III

Figure 7: Parameter space available without violating experimental constraints.

<ロ> <同> <同> < 同> < 同>

æ