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History

» Primordial black holes (PBH) were first proposed by Zeldovich,
Novikov [1], Hawking [2], and Carr and Hawking [3]

» Fundamentally different from stellar BH created from the
collapse of a star

» Density perturbations within the horizon can decouple from the
Hubble expansion and recollapse, forming black holes with mass
on the order of the horizon mass

» If perturbations enter the horizon during a radiation-dominated
era, they must be over a critical density contrast 6, ~ 1
(estimates vary) to collapse

» If perturbations are within the horizon during a matter-dominated
era, they can be amplified: §(t) = doa(t) = do(t/1r)?/3, increasing
the probability of collapse
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Figure 1: Summary of PBH fraction constraints assuming monochromatic mass
distribution. (Kawasaki et. al. 2016 [4], Carr, Kuhnel, Sandstad 2016 [5], Inomata et. al.
2017 [6], Inoue, Kusenko 2017 [7], Fuller, Kusenko, Takhistov 2017 [8], Niikura et. al.
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Sampling of production mechanisms
There are multiple different physical mechanisms which can
create these PBHs

» Perturbations from inflation (Carr, Lidsey, 1993 [10],
Kawasaki, Kusenko, Tada, Yanagida 2016 [4], Clesse,
Garcia-Bellido 2015 [11], Garcia-Bellido, Ruiz Morales
2017 [12])

» Shrinking of cosmic strings (Hawking 1989 [13])

» Collision of bubble walls during 1st-order PT (Crawford,
Schramm 1982 [14], Hawking, Moss, Stewart 1982 [15], La
1989 [16])

» Soft equation of state (p = wp with w <« 1/3) (Polnarey,
Khlopov 1985 [17], Khlopov 1980 [18])
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Motivation - issues

» A lot of models typically assume source of density
perturbations are due to fluctuations from inflation

» Specifically requires blue power spectrum (ns > 1) or
positive running of the coupling (dIn ng/dk > 0) to get
large power on short scales, which is disfavored by CMB

» Requires modifications to inflaton potential to get sufficient
PBH abundance (flat regions/inflections)

» |Is there a way around this? Is there another source of
perturbations which is decoupled from inflation?
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Motivation - solution

» Amplitude of Poisson fluctuations scales as 1/+/N, which
are heavily suppressed in typical thermal bath:
N~ prViu/T ~1073(Mp/T)3 ~ 1084(T/MeV)~3

» But in matter dominated era, “particle" number depends on
“particle" mass: N ~ pyVy/m

» Solitons can be created in the early universe with very

large masses due to composite nature, leading to smaller
number of “particles" per horizon (10* ~ 108)

» Fragmentation of a scalar condensate produces its own
density fluctuations from Poisson noise - no modifications
to inflaton required
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Motivation - solution

» Nonlinear mass-charge relationship (M « Q%, o < 1) leads
to further density perturbations, depending on the way the
charges are distributed amongst the solitons

» Highly chaotic fragmentation scenario leads to nonuniform
distribution of matter and large density perturbations

» Perturbations are further amplified by growth during
matter/soliton dominated epoch (§ « a), and eventually
collapse into black holes (§ > d¢)

» Many theories containing scalar fields (SUSY scalars,
axion, inflaton, etc.) allow for creation of such solitons in
the early universe, making this a fairly general mechanism
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Summary of mechanism

» Scalar field reaches large vev during/after inflation
(Affleck-Dine mechanism for charged scalars, misalignment
for axions, coherent oscillations for inflaton...)

» Condensate fragments into 10* ~ 108 solitons per horizon of
varying charge

» Stochastic/chaotic fragmentation event leads to large
number/energy density fluctuations

» Since solitons are NR matter, the universe enters a MD era;
soliton perturbations begin to form clusters

» Some fraction of soliton clusters collapse and form PBHs

» Solitons decay (destabilized through broken U(1),
decay/evaporation to lighter particles, etc.)

» PBHs survive to present day
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Some intuition —in pictures
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Summary of mechanism
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Figure 2: Diagram of cosmological evolution of the energy density of different species
of interest. Inset in upper right is a close-up of region tg < t < 7, where structure
growth and Q-ball decay occurs.
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Solitons

» Solitons are stable, localized solutions to field equations - field
configurations with a particle-like character

» Come in two flavors: topological and nontopological:

» Topological:

» Gain stability from a topological charge: i.e. winding/Chern-Simons
number (Skyrmions, hopfions)

» Typically associated with gauge fields: e.g. hedgehog/monopole
solutions

» Nontopological (Q-balls):

» Gain stability due to internal symmetry and energy conservation: e.g.
field with U(1) symmetry, mass m and conserved charge Q can form
soliton with mass M < mQ

» Symmetry can be either global or gauged

» Pseudo-stable solitons can form from systems that have approximate
symmetry at low energy (e.g. oscillons/oscillitons/axitons) due to
semi-conserved adiabatic charge (Kasuya, Kawasaki, Takahashi 2002
[19], Kawasaki, Takahashi, Takeda 2015 [20])
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Q-balls - theory v
» Q-balls have two fairly general requirements
for existence:

» Unbroken global/local symmetry and
conserved charge
(0 — €70 = FJrs.t 9,J" =0)

» Region of potential exists where field
energy is suppressed relative to equivalent
energy of free particles
(. st V(6.) < mP[o.?)

> Gives rise to time-dependent (oscillatory) localized
solutions of the field equations ¢(x, t) = ¢(x)e"! with
mass less than the sum of the masses of same Figure 3: Q-ball simulation by
number of free particles (M < mQ) Kasuya, Kawasaki [21]
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Q-balls - production, evolution and interactions

» Form very naturally in supersymmetric extensions to the SM due to flat
directions in scalar potential, and large number of scalar superpartners
(squarks and sleptons) (Kusenko 1997 [22])

» Coherent scalar condensate ®(x, t) = ¢e” created from Affleck-Dine
mechanism, where field gets large vev during inflation by jumping up the
potential

» Once V”(¢) < 62, condensate develops an instability and fragments into
Q-balls

» Can be destabilized by breaking the symmetry through higher-dim operators,
coupling to lighter degrees of freedom, etc.

» Decay of Q-balls could also aid in baryo(lepto)-genesis

» Global U(1) symmetry — only short-range, contact interactions - acts like
pressureless dust

» Gauging the symmetry can create some interesting effects
(supercurrents/magnetic dipoles, maximum size) and introduces long-range
interactions (ignore these types for now)
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Physics of Q-ball clustering

Derivation of PDF from charge distribution |

Assume Q-ball charge Q is a random variable with PDF fo(Q);
J dQ fq = 1. Mass of a collection of N Q-balls (each with mass
A Q|¥) is

N
M=3 NG (1)
i=1

where A* ~ V((¢)) and a = 3/4 for SUSY *“flat direction" (FD)
Q-balls, o = 2/3 for “curved direction" (CD) Q-balls.
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Derivation of PDF from charge distribution Il
PDF to find mass M composed of N Q-balls is given by

u(MIN) = < [ dortat o,> <M ZMQ\“) @)

N
Fu(uIN) = [ [ aaemnars <0')] @)
fo(Q) =46(Q — Q) = f(M|N) =06(M— NMy); Mo = ANQ§
@)

Will assume monochromatic charge distribution for simplicity.
Now we need to find how N is distributed! p(x, y) = p(x|y)p(y)
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Derivation of PDF from charge distribution IlI

Given N\ particles uniformly distributed in a box of volume L3,
what is probability to find N < A particles contained within
subvolume V < [3?

p(N|V) = (%) <L‘2>N <1 — é)N_N (Binomial dist.) (5)

N, L—oco e_nV(nV)N

N N=N/L® (Poissondist) (6)

Distribution normalized to unity, independent of nor V.



Primordial black holes

O0000e0

Physics of Q-ball clustering

Derivation of PDF from charge distribution 1V

» Results in joint distribution
Fo(M, N|V) = fi(M|N, V)p(N|V) (mixed
continuous/discrete distribution), normalized for any V

» Follows from “chain rule" of probability:
P(a, bc) = P(alb, c)P(blc)

» Fq gives probability density (in M) for finding N Q-balls
with total mass M within fixed volume V

» Need a method for “summing" over V to account for
contributions from all relevant length scales

» Must devise a procedure to coarse-grain/smear out
contributions from single scale V
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Physics of Q-ball clustering

Derivation of PDF from charge distribution V

Imax Imax )
> 9(V)=g(V1) +a(Va) + Zg(v dig(Vi/x'™")
{v}

1 [Yav v Vi
4 O
“ iy f, VIO —5H
x ~ few is factor related |
S—p—

to degree of coarse-graining. V=V /x Y
Will assume x = e for simplicity.



Primordial black holes

00000000

Production of PBH

Outline

Primordial black holes

Production of PBH



Primordial black holes

[e] Jelelelele]e]

Production of PBH

Density perturbations

» Fluctuations in the Q-ball distribution of mass M contained
within volume V give rise to a local density contrast

_Sp_p=(p) _M/V
fo(M. V) = p (n) (pa) ®)

where (pq) = (M) /V = Myn is average energy density of
Q-balls.

» Fluctuations grow proportional to scale factor during MD era:
8(tr) = do(tn/tq)?/>.

» Probability/fraction of collapse in MD era is given to be
8= 75(1)3/2(M/Mh0r)13/3, with v ~ 0.02 (Polnarev, Khlopov
1985 [17]).

» Ensure that only overdensities with §(fg) > . are counted
towards PBH production = 3« 3 x [6(tg) > d¢]
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PBH density |

We calculate the average PBH energy density at redshift

a(t) > a(rq) by computing the average Q-ball energy at time ¢
weighted by g to find the fraction that will go info PBHs when
they form, then redshifting this appropriately:

o) = (20) [ 2 o Y10 (10)
)

(VRS [t
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PBH density
Differential density spectrum as function of M can by found by

dropping integral over M, and the differential DM fraction found
by dividing by pDM'

d{psH) l‘f Z / av BM diegy 1 d{psH)
am a aMm PDM am
(12)

Can get rough idea of contribution to dark matter fraction by
looking at first equation, and exact contribution by looking at
second:

_ py9fPBH _ dfesy
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Radiation density
Need to ensure that thermal history is self-consistent:
» Before/after the MD era: standard cosmology:

p(t < o) = Tk
» At beginning of MD era:
PR =pPQ = 3;/,,2 = (pa) (%)3 eta/ma
» During MD era: pg =
[PRo + pxo [, OX' z(x’)e*xl] z74 x=Txt, z=(x/x0)?/®
(Scherrer, Turner 1985 [23])
» Matching boundary conditions gives us

e'rR—'a (%)2/ [1 +r 72/3|_ (3,ro,r,q)] 1, ri=t/mq
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Figure 4: Plot of fog (M) together with constraints. Dark matter fraction for each curve
is 1, 0.2, and 0.001 (left to right). Reheat temperature after Q-ball decay approaches
BBN bound as Mgy 2 1 Mg
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Preliminary oscillon results |

» PBH production from oscillons (solitons made of real scalar fields)
is also possible (subject to some constraints).

» Oscillons don’t have conserved charge, so they are only
approximately stable (have approximately conserved adiabatic
charge (Kasuya, Kawasaki, Takahashi 2002 [19], Kawasaki,
Takahashi, Takeda 2015 [20])

» Arguments involving slicing charge up into different configurations
doesn’t work - need to look at energy constraints

» Institute cutoff in density spectrum so that average density never
exceeds energy density of field before fragmentation

» Requires parametric resonance to amplify unstable wave modes,
which become oscillons

» Inflaton is ideal candidate - oscillons produced in coherent
oscillations after inflation ends, avoids issue of fine-tuning matter
domination to coincide with soliton decay
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Preliminary oscillon results Il

PBH DM fraction
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Figure 5: Comparison of predicted DM fraction of PBH generated from oscillons with
observational constraints.

DM fraction: M dfgn/dM

m, (GeV) | ti=1/H,(sec) | T, (GeV) tr(sec) | Trn (GeV) | fom | peak May (9)
5x10° | 27x10°® |98x10 "7 |6.7x10 | 4x10° 1.0 | 35x100
15x10- 2| 33x10 "7 |93x10 77| 7.1 x 1079 43 0.23 1 x 102
9x10 0 | 42x10° |19x10 2| 34x10°3 [56x103|0.013| 1.3x10°
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Work to be done

> Apﬁly to models of scalar fields this mechanism could work

wit
» Inflaton, axion, AD with SUSY, etc.

» Verify mechanism through numerical simulation - could be
difficult since PBH only form in very small fraction of
horizons.

» Investigate possible GW wave signal from early PBH
production.

» Investigate effects of angular momentum during collapse
and high spin (Harada, Yoo, Kohri, Nakao 2017 [24])
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Summary

» Scalar field fragmentation mechanism generates solitons in
early universe
» Distribution of solitons can create very large density
fluctuations in the early universe
» Leads to copious PBH production
» Advantages:
» Possible with a variety of bosonic fields, including sfermions,
inflaton, axion...
» Does not require fluctuations from inflation to work
» Fairly general mechanism, has potential to create PBH with
sufficient abundance to explain DM
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Figure 6: Fraction of Q-ball energy density that goes into PBH.
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