Delensing: *T* science; *T* and *P* issues

Alex van Engelen (CITA / U. Toronto)

 Susan Clark, Dan Green, D.W. Han, Colin Hill, Mat Madhavacheril, Joel Meyers, Neelima Sehgal, Blake Sherwin

- Lensing maps can come from:
 - CMB temperature $\kappa(TT)$
 - Polarization к(EB)
 - External tracers

- Lensing maps can come from:
 - CMB temperature $\kappa(TT)$ Today (Planck)
 - Polarization к(EB)
 - External tracers

- Future (S4 / PICO)
- Today
 (Planck CIB / Herschel CIB)

Lensing map noise - from space!

- Polarization lensing will dominate for PICO
- Temperature: extragalactic foregrounds
 - Polarization: galactic foregrounds

"Delensing beyond the B modes"

Green, Meyers, AvE 2016

"Delensing beyond the B modes"

CMB T correlation function

Power spectrum covariances

$$\operatorname{Cov}(C_{\ell}^{\mathrm{d},XY}, C_{\ell'}^{\mathrm{d},WZ}) = \frac{f_{\mathrm{sky}}}{2\ell+1} \left[C_{\ell}^{\mathrm{d},XW} C_{\ell}^{\mathrm{d},YZ} + C_{\ell}^{\mathrm{d},XZ} C_{\ell}^{\mathrm{d},YW} \right] \delta_{\ell\,\ell} + f_{\mathrm{sky}} \sum_{L} \left[\frac{\partial C_{\ell}^{\mathrm{d},XY}}{\partial C_{L}^{\phi\phi}} \operatorname{Cov}_{L\,L'}^{\phi\phi,\phi\phi} \frac{\partial C_{\ell'}^{\mathrm{d},WZ}}{\partial C_{L'}^{\phi\phi}} \right],$$

Green, Meyers, AvE 2016

See also: Benoit-Levy, Smith, Hu 2012 Peloton, Schmittfull, Lewis, Carron, Zahn 2016 Motloch, Hu, and Benoit-Levy 2016

Power spectrum covariances

Delensing removes covariances

Green, Meyers, AvE 2016

Cosmology - N_{eff}

CMB-S4 science book

$$B_{templ} \sim E_{obs} \bigstar \kappa(E_{obs}B_{obs})$$

 $B_{del} = B_{obs} - B_{templ}$

$$B_{templ} \sim E_{obs} \bigstar \kappa(E_{obs}B_{obs})$$

 $B_{del} = B_{obs} - B_{templ}$

 $<B_{del}B_{del}> \sim <(B - EEB)^2>$ ~ <BB> - 2<EBEB> + ...

Bias if
$$\langle EBEB \rangle != 0 \rightarrow 1$$
. Biases even for GRF
2. Correlations from Dust

$$B_{templ} \sim E_{obs} \bigstar \kappa(E_{obs}B_{obs})$$

 $B_{del} = B_{obs} - B_{templ}$

 $<B_{del}B_{del}> \sim <(B - EEB)^2>$ ~ <BB> - 2<EBEB> + .

Using same lensed B modes for reconstruction that you are delensing

T: Ideal delensing

Uncorrelated noise

T: Using reconstructed lenses

Uncorrelated noise

Mitigation method (a)

 Delens ~10 disjoint annuli separately

Mitigation method (b)

Mitigation method (c)

Namikawa 2017

Calculate 4pt and 6pt directly from realization of map

$$B_{templ} \sim E_{obs} \bigstar \kappa(E_{obs}B_{obs})$$

 $B_{del} = B_{obs} - B_{templ}$

 $<B_{del}B_{del}> \sim <(B - EEB)^2>$ ~ <BB> - 2<EBEB> + ...

Bias if
$$\langle EBEB \rangle != 0$$

(sim. for TTTT)
1. Biases even for GRF
2. Correlations from Dust

$[T_{\mathrm{dust}}, Q_{\mathrm{dust}}, U_{\mathrm{dust}}]$

Vansyngel_mapTqu_00036

-0.00008000040000000040000800002000024

-0.00030.00020.00020.00010.000**1**0.000**0**5000000005

 $\kappa(E_{\rm dust}, B_{\rm dust})$

Vansyngel_kappaMap_00036

 $\phi(E_{\rm dust}, B_{\rm dust})$

Vansyngel_phiMapFiltered_00036

$[T_{\text{dust}}, E_{\text{dust}}, B_{\text{dust}}]$ filtered

Vansyngel_inTebFiltered_00036

	1	1				
-15	0	15	30	45	60	75

1	1			1	1	1	
-8	-6	-4	-2	0	2	4	6

											_
-0	.10-0	.08-	0.06	- 0.04	⊢0.02	20.00	0.02	0.04	0.06	0.08	0.10

$[T_{dust}, Q_{dust}, U_{dust}]$ filtered

Vansyngel_inTquFiltered_00036

1	1	I		1	1	
-15	0	15	30	45	60	75

	1	1		1	-	1	1	
-4	-3	-2	-1	0	1	2	3	4

	1		1	1	1	
-3.0	-1.5	0.0	1.5	3.0	4.5	6.0

$\begin{bmatrix} T_{\text{dust}}, Q_{\text{dust}}, U_{\text{dust}} \end{bmatrix} \text{ filtered} \\ \text{lensed with } \phi(E_{\text{dust}}B_{\text{dust}}) \end{bmatrix}$

Vansyngel_delensedTqu_00036

1	1	I		1	1	
-15	0	15	30	45	60	75

1	1	1		1	-			
-4	-3	-2	-1	0	1	2	3	4

	1	1		1	1	
-3.0	-1.5	0.0	1.5	3.0	4.5	6.0

$\langle B_{\rm dust} B_{\rm template} \rangle$

Summary

- T delensing
- Biases for *T* and *P* delensing arise when using same modes to reconstruct κ that you are trying to delens.
 - 3 methods to mitigate
- Polarized Dust NG on small scales??? No evidence for impact at leading order in Vansyngel simulations

Extra slides.....

3. More mitigation methods

Model this bias using simulations (Carron+2016)

 σ

Demonstration with Planck CIB

Outline

CMB-S4 science book

Foregrounds in CMB temperature-based lensing

van Engelen, Bhattacharya, Sehgal, Holder, Zahn, Nagai 2014

- CIB/tSZ/kSZ/κ bi/trispectra are measurable and interesting
- Is bias-hardening feasible?
- Is spectral cleaning feasible? tSZ/CIB bispectrum/trispectrum residuals — comparable to kSZ?

To-do for TT lensing — test both spectral and spatial cleaning with full end-to-end simulation analysis

CITA peak-patch simulation Alvarez, Stein, Bond, Battaglia, van Engelen, Pham, +++

Outline

- P lensing will dominate
- T: extragalactic foregrounds
- P: galactic foregrounds

Lensing noise vs. instrumental noise

- Polarization lensing will dominate for PICO
- Temperature: extragalactic foregrounds
- Polarization: galactic foregrounds

We measure this

Hu & Okamoto (2001)

We measure this

Hu & Okamoto (2001)

We measure this

Hu & Okamoto (2001)

We want this

We measure this

Separation of primordial CMB and mass map from Lensing analysis

We measure this

• Delensing ---> r, Neff

• Delensing --> r, Neff

• Delensing —> r, Neff

• Large-scale lensing —> $\sum m_{\nu}$, w, dm

• Delensing —> r, Neff

- Large-scale lensing —> $\sum m_{\nu}$, w, dm
- Small-scale lensing —> w, $\sum m_{\nu}$

- Delensing —> r, Neff
- Large-scale lensing —> $\sum m_{\nu}$, w, dm
- Small-scale lensing —> w, $\sum m_{\nu}$

• Cross-correlation between CMB lens and other data sets —> w, $\sum m_{\nu}$

1. Ideal delensing

2. Using reconstructed lenses

3. One mitigation method

$B_{templ} \sim E \bigstar \kappa(EB)$

Bias if $\langle B_{low}B_{templ} \rangle \sim \langle EBEB \rangle != 0$

кк autospectrum

• Delensing

Non-Gaussianity of dust polarization on small scales?

 $B_{\text{templ}} \sim E \bigstar \kappa(EB)$

 $B_{del} = B_{obs} - B_{templ}$

