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KID	=	kinetic	inductance	detector

MKID	=	microwave	kinetic	inductance	detector

LEKID	=	lumped-element	kinetic	inductance	detector



Why	investigate	KIDs	for	CMB	Studies?
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• High	multiplexing	factorsmake	them	particularly	suitable	for	instruments	

with	10,000	or	more	detectors	(CMB-S4,	for	example).

• Comparatively	small	number	of	wires needed	to	sub-kelvin	stage,	and	no	
additional	sub-kelvin	multiplexing	circuitry	is	needed	(no	SQUIDs).

• No	delicate	membranes	are	required	and	arrays	can	be	made	with	a	

comparatively	small	number	of		processing	steps.		Some	architectures	
have	been	fabricated	in	commercial	foundries.	

• Fast	time	constants	(~100	µs)	provide	a	lot	of	bandwidth	for	modulation	

schemes	– like	half-wave	plate	modulation	– and	they	help	with	cosmic	ray	

hits.

• Low	power	consumption	readout	(<	50	watts	per	comb)	is	commercially	

available.		Required	LNAs	are	available.	Required	firmware	is	open-source.

• Some	TES	bolometer	architectures	are	hard	to	make	with	<	1	pW

saturation	power,	and	MKIDs	might	actually	be	more	straightforward.



Organization	of	Presentation
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1)	Dual	Polarization	LEKIDs
- McCarrick et	al.	(2017)	A&A	accepted.	arXiv:1710.02239

2)	Multi-Chroic Dual-Polarization	MKIDs
- Johnson	et	al.	(2017)	JLTP	submitted. arxiv:1711.02523
- optical	response	of	first	prototype	array

3)	Aluminum-Manganese	LEKIDs
- Jones	et	al.	(2017)	APL,	110,	222601.

KID	=	kinetic	inductance	detector

MKID	=	microwave	kinetic	inductance	detector

LEKID	=	lumped-element	kinetic	inductance	detector
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McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239

Project	supported	in	part	by	a	RISE grant,	ONR grant	and	NASA/NESSF.



Multiplexing	Strategy
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Dual-Polarization	LEKID	Development

6

McCarrick et	al.	(2017)	A&A	accepted.	arXiv:1710.02239
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Dual-Polarization	LEKID	Development
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McCarrick et	al.	(2017)	A&A	accepted.	arXiv:1710.02239



Simulated	Coupling	Performance
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McCarrick et	al.	(2017)	A&A	accepted.	arXiv:1710.02239

see	also:	McCarrick et	al.	(2016)	Proc.	SPIE,	9914,	99140O

see	also:	Bryan	et	al.	(2015)	Proc.	ISSTT,	T3-4.



Test	Setup	with	Half-Wave	Plate
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McCarrick et	al.	(2017)	A&A	accepted.	arXiv:1710.02239



Millimeter-Wave	Source
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Flanigan et	al.	(2016)	APL,	108,	083504.



Test	Setup	with	Half-Wave	Plate
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Multiplexing	Factor	of	128	Demonstrated

12

120 130 140 150 160
MHz

�40

�35

�30

�25

�20

�15

�10

�5

0

S
21

(d
B

)

McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239



Resonators	Behave	as	Expected
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McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239



Measured	Quasiparticle	Lifetime
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McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239



Measured	NEP	versus	Absorbed	Power

15

10�15 10�14 10�13 10�12 10�11 10�10

P (W)

10�17

10�16
N

E
P

(W
/p

H
z)

coherent data

(4hvP + NEP2
0)

1/2, ⌘ = 7.1e � 07

(4hvP )1/2

McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239

see	also:	Flanigan et	al.	(2016)	APL,	108,	083504.



Measured	Responsivity
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McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239



Measured	Noise	(Calibrated)
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McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239
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Measured	Polarization	Response
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McCarrick et	al.	(2016)	A&A	accepted.	arXiv:1710.02239
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Multi-Chroic Dual-Polarization	MKIDs

Project	supported	by	a	grant	from	NSF/ATI.
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Johnson	et	al.	(2016)	Proc.	SPIE,	9914,	99140X

Johnson	et	al.	(2017)	JLTP	submitted. arxiv:1711.02523



Overview	of	Multi-Chroic MKID
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• We	are	developing	scalable	modular	arrays	of	horn-coupled,	polarization-
sensitive	MKIDs that	are	each	sensitive	to	two	spectral	bands	between	
125	and	280	GHz	(150	GHz	and	235	GHz).

• These	MKID	arrays	are	tailored	for	future	multi-kilo-pixel	experiments
that	will	observe	both	the	cosmic	microwave	background	(CMB)	and	

Galactic	dust	emission.

• Detector	modules	like	these	could	be	a	strong	candidate	for	a	future	CMB	
satellite	mission	and/or	CMB-S4.

• Our	device	design	builds	from	successful	transition	edge	sensor	(TES)	
bolometer	architectures that	have	been	developed	by	the	Truce	
Collaboration	and	demonstrated	to	work	in	receivers	on	the	ACT	and	SPT	

telescopes.



Multiplexing	Strategy
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Development	of	Multi-Chroic MKIDs

23

350 μm
handle
wafer

backshort

5 μm device
layer

20 μm
gaps

4.8 mm horn pitch

waveguide

AlMn sensing element

transmission line for probe tones

λ/4 hybrid CPW MKID

hybrid
tee

band-pass
filters 

OMT

slotline transition

module
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Microstrip-to-CPW	MKID	Coupling	Schematic
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Surdi,	H. (2016)	“Applications	of	Kinetic	Inductance:	Parametric	Amplifier	&	
Phase	Shifter,	2DEG	Coupled	Co-planar	Structures	&	Microstrip to	Slotline

Transition	at	RF	Frequencies.”	Dissertation	at	ASU.

Johnson	et	al.	(2016)	Proc.	SPIE,	9914,	99140X



Array	Element	Details
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Simulated	Spectral	Bands
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HFSS/Sonnet	simulation	results	show	the	expected	absorption	
efficiency	is	approximately	90% taking	into	account	all	of	the	

elements	in	the	circuit	except	the	OMT	probes.	



Noise	Sources	and	Expected	NEP	@	150	GHz
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photon	noise	dominated	above	~1	pW

forecasted	NEP	with	aluminum	sensors



Noise	Sources	and	Expected	NEP	@	150	GHz
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forecasted	NEP	with	aluminum-manganese	sensors

photon	noise	dominated	above	~0.01	pW



Photographs	of	Engineering	Array
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Fabricated	at	Stanford



Multi-Chroic MKID	Array	Goal
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Layout	of	Prototype	Array
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Engineering	Array	Performance
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92	of	92	resonators	found

fabricated	on	silicon	wafer



Engineering	Array	Performance
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fabricated	on	silicon	wafer



Engineering	Array	Performance
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First	Complete	Prototype	Array
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fabricated	on	SOI	wafer



Optical	Response	of	Prototype	Array
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More	data	coming	soon!



Future	Plans:	Scale	up	the	Array
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Project	supported	by	a	grant	from	NSF/ATI.
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Jones	et	al.	(2017)	APL, 110,	222601.
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High	Qi AlMn LEKIDs
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Jones	et	al.	(2017)	APL, 110,	222601.



High	Qi AlMn LEKIDs
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Jones	et	al.	(2017)	APL, 110,	222601.



Summary
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MKIDs	have	characteristics	that	could	be	useful	for	CMB	studies:
• high	multiplexing	factors

• no	SQUIDs

• no	delicate	membranes

• Fast	time	constants

• Low	power	consumption	readout

• Some	architectures	have	been	fabricated	in	commercial	foundries.	

We	are	developing	two	different	KID	varieties:
• dual-polarization	LEKIDs	(supported	by	ONR,	NASA/NESSF,	RISE)

• multi-chroic dual-polarization	MKIDs	(supported	by	NSF/ATI)

AlMn appears	to	be	a	suitable	sensor	material.

Measured	LEKID	noise	properties	look	promising.		MKID	noise	results	soon.

Readout	system	based	on	ROACH-2	has	been	developed.


