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Planck low ell constraints

Polarization power spectra
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Planck reached its objectives at all
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At low ell: T=0.055 = 0.009
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Lessons from Planck

The data analysis and cleaning was a long process and required many iterations
At the end, we reached the detector fundamental limit for cosmological channels
Some effects were not expected at the level we found them in flight data

--> ADC non-linearities

--> Long time constants

--> Response to cosmic rays

--> 1/f noise

--> Band-pass mismatch
Coupling between effects was problematic. Ex: 4K lines and ADC non-linearities

but for future experiment targeting o, < 103, systematic effects must be controlled
to a higher precision, although many effects will probably scale as 1/Ndet.

Importance of observation redundancies: different survey, different scanning angle
(limited for Planck), different detectors etc..., importance of the dipole, 353 GHz is
harder to process

Importance of house keeping data. E.g: fully sampled raw data for the ADC
correction.

Many affect as band-pass mismatch, polarization efficiency, calibration are
coupled and need to be corrected at the map-making level, with the help of the
dipole



Noise in HFl time ordered data

Not observed at that
level on the ground

fenee™ 0.15 Hz

knee
No clear explanation,
probably not due to
CRs since not
modulated as glitch
rate

Fundamental limit
after removal of
systematics
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Glitches below the detection threshold common between PSB-a and PSB-b
Provide a limit on the level of remaining glitches in data



HFIl processing pipeline overview
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Cosmic rays at L2

Primary mirror

Telescope baffle

385K 4 ; ' Solar panel

Cut off due to material around the
detectors at ~ 50 MeV

No contribution from solar particles
which can not reach the detectors,
except during flares

Amplitude of the spectrum at L2 is
modulated by solar activity

Mainly galactic
protons and
Helium nuclei
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CR interaction with HFI detectors

Thermal modeling is important.
Long time constants come from
the links between the wafer and
the detector housing
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- Long glitches are direct impact of protons in
the silicon wafer

- short glitches are direct impact of protons in

the grid/thermistor. Should be representative
of response to photons.

This was proved with the help of ground tests
with alpha particles



Ground tests and thermal modeling

Ground tests were not performed to a sufficient accuracy to provide a
definitive answer on the thermal path

Simulation of a 23MeV Proton in the silicon die
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Cosmic ray removal

Joint fit of templates for & "( ‘
each detected event. |
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At the end, the glitch contribution
to the noise on the maps is
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Lines induced by the 4K compressors

4He — JT cooler induced sharp lines in
the data, due to electromagnetic and
microphonics interference with the
detector wires
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Data acquisition locked on the 4K cooler
compressor: fixed line frequencies, multiple of
20 Hz (before demodulation)

Amplitudes vary during the mission
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4 K line processing
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2015 release

2013 release
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Removed by notch filters, ring by ring

Resonant rings, for which harmonics
of the signal are close to the 4K line
frequencies are removed

Better rejection for 2015 results
- correcting an artifact affecting
cosmology in 2013 data.
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Biggest problem is that 4K lines affect
the ADC non-linearities!
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ADC non-linearities
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This problem was not considered before flight,

the ADC response had to be guessed from 3.276x10°F
flight data!
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Model and correction

* .
The Electronics response estimated from: MID::ast sample data (407180 HZ_)-

_ CPV data 1 Including 4K lines:
: | 20, 80, 160, 200 Hz

- Raw data every 100 seconds (same 4K
phase)

The ADC is estimated from
- The raw data measurement
at 4K (end of the mission)

- CPV data
- Science data

: -

One se’mple

Model: Digitization:  d, . (¢) = ADC[d(?)]
t; +40

Data sample:  m; = EADC(d(t))

Non-linearity function :

(m) = F(S)

Correction is straightforward with the
knowledge of F.

F is calculated from an estimation of the
electronic and the ADC responses, and 4K lines

— ADU coded

DU corr

Al

Uncertainties in Main systematic effect
the 4K line fregs. in Planck for polar.




Gain half difference [107°]
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ADC correction

The correction is very effective but limited by the 4K line estimation.

Relative effective gain per pointing period

.

Ring [103]

A second correction was
performed at the map-making
level

Jackknife : positive — negative
parities
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Gain calibration and long time constants
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Impact of long time constants on data

* Long time constants are observed in data ~ 2 s for the longest
seen in the tail of short glitches
seen on planet maps
induces a shift of the dipole

1-2 % effect in the calibration if not
properly corrected: affect | >~ 20

variable from detector to detector

Different survey with nearly opposite scan directions
helped to constrain and correct the longest time constants



Survey difference maps

Survey difference maps were useful to track and characterize systematic effect

Uncorrected time constants slightly
shift the galaxy
Residual dipole seen in the difference

217GHz I map NO VLTC CORRECTED S81-3%2

—-10.0

e 100 ot Corrected after optimization at the
-_— map-making level by template
fitting



Beam and transfer function estimation

Time response is degenerate with the
beam response

The time response and beam shapes
are estimated using a combination of
planet scans (by symmetrizing the
beam shape), galaxy crossings, bias
steps (CPV phase) and glitch data.

The pointing uncertainties (~ 3 arcsec)
and glitch is the main source of errors
in the main lobe estimation
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High redundancies help

* Surveys with opposite scanning directions
allowed optimization of parameters and
correction of many systematic effects.

* Limited single detector cross-linking in Planck
data : many effects on polarization as | -> P
scale with <cos 2W> and <sin 2W>. Larger

precession angle provides higher cross-linking
params.
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Band-pass mismatch

Differences in the band shapes from detector to detector induced intensity to
polarization of galactic components when calibrating on CMB
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CO transition line 1-> 0 falls at the edge of the 100 Hz
filters so the CO components has very different
amplitude from detector to detector
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After integrating the dust
spectrum:

A few percent effects for the
amplitude of the dust from
detector to detector
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Relative calibration from dust
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Band-pass mismatch correction

-Band passes were measured from the ground, but leakage coefficients have to
be estimated from flight data

m=1g + Youst = DT pse + Yo =D T + ...

- Joint estimation of CO and dust leakages at the map-making level. Naturally
minimizes the survey difference contamination. Coupled with many effects.

[ PR 5 5 2
g 5 5 5 1 Effect mostly
1: &: : 1 removed at the end




Band-pass mismatch error prediction

Angular power spectrum 80% sky fraction

1071
= = BB len with beam 32 arcmin ~ At
== = BB unlen with beam 32 arcmin 200 dEt y Hoang et al'
—. 1072 4 = BB:a30° B65° 0.5rpm 4days A 3
f§< = BB:a50° B=45° 0.5rpm 4days \\
3 3 mm= BB :a50° B45° 0.1rpm 96mins \
— 107> { = 8B:0a65" 30" 0.1rpm 96mins 3
S
<107 ;
= -
E‘-).. r\0.001 Preceslsmn
— -5 angle
+ 1077 5 M
=) \ NV
~107° 4 . |
; \
10-7 LiteBIRD \ 1B a65° B30° 0.1rpm 96 prec
j ) E a65° B30° 0.1rpm 96 prec
100 10! 102
'Ba7.5° B85° 1rpm 6 month
L ‘Ea7.5° B85° 1rpm 6 month
r'§_<' 10-3 4 == Blen with beam 32 arcmin
= == B unlen with beam 32 arcmin
5
< 1074
Q
i
1103
10-°
| o— ]
-0.002 0.002 10-7

10° 10!



Odd even rings, null test 2015
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Odd even rings, null test 2017
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Summary of systematic effects (HFI)
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