SPIDER 2015 Flight Systematics B-mode from space workshop | Berkeley | Dec. 5, 2017

Edward Young Princeton University

Deployment 2014-2015

‡ Fermilab

JOHNS HOPKINS

Outline

- Instrument overview
- Possible problems that turned out to be non-issues

1 "Surrey

- Real problems
- Preliminary results
- SPIDER2 280 GHz

Instrument Overview

Instrument overview

- Balloon-borne polarimeter
- Mapped approximately 10% of the sky in a 16.5 day flight
- Lightweight carbon fiber gondola
- 6 independent telescopes in a single cryogenic and vacuum system

 3 at 95 GHz, 3 at 150 GHz
 - Custom control oloctronic
- Custom control electronics

Cryogenic system

- 1300 Liter LHe4 cryostat
- Two vapor-cooled shields
- Capillary-fed 12 Liter superfluid tank
- Closed-cycle He3 adsorption fridge per telescope

Telescope and detectors

- Part of the BICEP/Keck/SPIDER heritage
- Almost all optical filtering using reflective filters (one Nylon filter at 4 K)
- Internal baffles at 1.5 K

	95 GHz	$150 \mathrm{~GHz}$
FPUs	3	3
Detectors	697 (816)	1256(1488)
FWHM (arcmin)	42	30
Observed loading (pW)	< .25	< .35
NET $(\mu K \sqrt{s})$	7.1	5.3

Half-wave plate

- Birefringent single-crystal sapphire with anti-reflection coating
- Mounted at 4 K
- Rotated twice a day full Q/U coverage per pixel every 2 days

Power

- Array 2200 W (peak), 1440 W (average)
- Two independent systems
- 35 V for switched mode DC power supply
- Charges 2 40 Ah/12 V lead acid battery

Autonomous detector operations

- SQUID tuning
 - Retuned after every fridge cycle
 - Compares to preflight templates and adjusts parameters as needed
 - ~5 minutes
- Detector responsivity
 - Electrical bias step as a proxy for gain
 - 2 seconds to run for .1% uncertainty on gain
 - Monitors and readjusts bias automatically during flight
- Fully automated
 - Downlinks minimal set of statistics to verify functionality

Plot from Sasha Rahlin

Possible problems that weren't

Possible problems that weren't: Gain drift

- Bias steps stopped halfway through flight on several FPUs
 - Bias step results were not downlinked during flight
- No rebiasing during this time
- Used detector DC level as a proxy for gain
- Turns out we were rebiasing too often

Plot from Anne Gambrel

Possible problems that weren't: Detector pointing

- Used a deprojection analysis with Planck
- Corrections to the plate-scale pointing of each detector

Possible problems that weren't: Boresite pointing

SPIDER averaged offset

- Corrections relative to dedicated pointing system
- Uses the same sensors to get pointing so don't need to worry about referencing two instruments

Possible problems that weren't: Beam ellipticity

X1 Beam Ellipticity

Possible problems that weren't: Cosmic rays

See Jeff Filippini's talk for more details!

Real Problems

Real problems: RF pickup 500 Raw 0 ADU -500 -1000-1500 Flagged 10 ADU 0 -10 ويعاجم ويربال ويصارطا والالار المالية الملية والمروارة أعارها ومحمد Filtered all a had 5 ADU 0 -5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Time [min]

- Loss of ~10% of data on good channels
- Transmitters handshake every ~minute

Real problems: RF pickup

- Loss of DC level
- Difficult to reestablish DC level because it is caused by transmitter pulses, which simultaneously cause a loss of data
- Often flux jumps in one detector will cause a small DC level step in another detector in column

Real problems: RF pickup

Reaction Wheel

Real problems: Scan-synchronous noise

Real problems: Scan-synchronous noise

- Boresite elevation dependent
- Requires heavy filtering to remove
 - Poly-5 removed per detector per half-scan
 - \circ Terrible for filter function
 - Working on alternatives to poly-5 removal (SVD, template fitting, etc.)

Preliminary Science Results

Beam stacks

Spectra

PRELIMINARY!

SPIDER 2

Figure from Sasha Rahlin

- 280 GHz FPUs (3)
- Launch December 2018
- Overlap with ground experiments for foreground rejection

Photo from Stevie Bergman

Takeaways

- Low detector loading, much lower than designed saturation power
- Successful autonomous operations
- No beam or pointing systematics
- Cosmic rays not a problem see Jeff's poster
- Real problems are RF pickup and scan synchronous noise
 - Loss of data due to flagging
 - Aggressive poly filtering
- Competitive polarization maps at 95 and 150 GHz
- SPIDER2 will launch Dec. 2018 with 280 GHz detectors

Bonus Slides

Flight

Telemetry

- TDRSS
- LOS
- DGPS
- Iridium

Filter function

• Poly 5 per half scan

Rebias amplitudes

Filter stack

STAGE	TEMPERATURE	ELEMENT	cutoff [GHz]
		1/8" UHMWPE + AR	1500
Window	250 K	C15 shader	5200
	C30 shader	2300	
VCS2 130 K	C15 shader (×2)	5200	
	C30 shader (×2)	2300	
VCS1 35 K	C15 shader	5200	
	35 K	C30 shader (×2)	2300
	12cm^{-1}	360	
Receiver 4K	10cm^{-1}	290	
	Nylon + AR	540	
Receiver 2K	$6 \mathrm{cm}^{-1}$ (150 GHz)	180	
	4cm^{-1} (94 GHz)	115	

Deprojection Equations

Param	Template
δg	$T_g(t) = g\left(\mathcal{B} \cdot \Theta\right)\left(\vec{p}(t)\right)$
δx	$T_x(t) = g\sigma \left(-rac{\cos\gamma}{\sin heta} rac{\partial}{\partial\phi} + \sin\gamma rac{\partial}{\partial heta} ight) \cdot \left(\mathcal{B} \cdot \Theta ight) \left(ec{p}(t) ight)$
δy	$T_y(t) = g\sigma \left(-\frac{\sin\gamma}{\sin\theta} \frac{\partial}{\partial\phi} - \cos\gamma \frac{\partial}{\partial\theta} \right) \left(\mathcal{B} \cdot \Theta \right) \left(\vec{p}(t) \right)$
$\delta\sigma$	$T_{\sigma}(t) = g\left(\frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2} + \frac{\partial^2}{\partial\theta^2}\right)\left(\mathcal{B}\cdot\Theta\right)\left(\vec{p}(t)\right)$
δp	$T_p(t) = g \left[\cos 2\gamma \left(\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial \theta^2} \right) + \sin 2\gamma \left(\frac{\cos \theta}{\sin^2 \theta} \frac{\partial}{\partial \phi} - \frac{2}{\sin \theta} \frac{\partial^2}{\partial \phi \partial \theta} \right) \right] (\mathcal{B} \cdot \Theta)$
δc	$T_c(t) = g \left[\sin 2\gamma \left(\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} - \frac{\partial^2}{\partial \theta^2} \right) + \cos 2\gamma \left(-\frac{\cos \theta}{\sin^2 \theta} \frac{\partial}{\partial \phi} + \frac{2}{\sin \theta} \frac{\partial^2}{\partial \phi \partial \theta} \right) \right] (\mathcal{B} \cdot \Theta)$

Recovery

- Preliminary recovery February 2015
- Full recovery November 2015
- Lead by BAS

Atmosphere

