Primordial Gravitational Waves from Axion-Gauge fields dynamics

Ema Dimastrogiovanni

"B-MODE FROM SPACE" — UC Berkeley— 12/4/17

1

OUTLINE AND (SOME) REFERENCES

- GW from inflation
- Axion-gauge fields models: genesis and motivations
- Abelian vs non-Abelian case: inflaton as the axion
- Axion-gauge fields as spectators
- Conclusions and outlook

Anber - Sorbo 2009 Cook - Sorbo 2011 Barnaby - Peloso 2011 Barnaby - Namba - Peloso 2011 Adshead - Wyman 2011 Maleknejad - Sheikh-Jabbari, 2011 ED - Fasiello - Tolley 2012 ED - Peloso 2012 Namba - ED - Peloso 2013 Adshead - Martinec -Wyman 2013 Namba - Peloso - Shiraishi - Sorbo - Unal 2015 Obata - Miura - Soda 2016 Caldwell 2016 Smith - Caldwell 2016 Peloso - Sorbo - Unal 2016 ED - Fasiello - Fujita 2016 Adshead - Martinec - Sfakianakis - Wyman 2017 Adshead - Sfakianakis 2017 Agrawal - Fujita - Komatsu 2017 Thorne - Fujita - Hazumi - Katayama - Komatsu - Shiraishi '17 Caldwell - Devulder 2017

… … …

GWs FROM INFLATION

Tensor fluctuations:

$$
ds^{2} = a^{2}(\tau) \left[-d\tau^{2} + (\delta_{ij} + \sqrt{\gamma_{ij}(\tau, \vec{x})}) dx^{i} dx^{j} \right]
$$

transverse & traceless

$$
\partial_i \gamma_j^i = 0 \qquad \gamma_i^i = 0
$$

$$
\gamma_{ij}(\vec{x}, t) = \int \frac{d^3k}{(2\pi)^{3/2}} \sum_{\lambda = \pm} \epsilon_{ij}^{\lambda}(\hat{k}) \gamma_{\lambda}(\vec{k}, t) e^{i\vec{k}\cdot\vec{x}}
$$

independent degrees of freedom $6 - 4 = 2$

Inflationary GWs : standard vacuum production

• Energy scale of inflation:

 $V_{\text{infl}}^{1/4} \approx 10^{16} \text{GeV} (r/0.01)^{1/4}$ $H \approx 2 \times 10^{13} \sqrt{r/0.01}$ GeV

- Scalar field excursion (Lyth bound): $\Delta\phi/M_P \gtrsim (r/0.01)^{1/2}$
- Red tilt: $n_T \simeq -2\epsilon = -r/8$
- Non-chiral: $P_{\lambda+} = P_{\lambda-}$
- **Gaussian**

One or more of these predictions may be easily violated beyond the minimal set-up!

Beyond standard vacuum fluctuations

NEW SYMMETRIES NEW FIELDS

breaking of space-diff invariance
(irreducible) vacuum generation
and non zoro graviton mass and non-zero graviton mass [Endlich et al., 2013, Bartolo et al, 2015]

additional GWs production next to

 $\mathcal{L} = \mathcal{L}_{\text{inflaton}} + \mathcal{L}_{\text{spectator}}$

Beyond standard vacuum fluctuations GW FROM INFLATION

NEW SYMMETRIES NEW FIELDS

breaking of space-diff invariance

(irreducible) vacuum generation

(irreducible) vacuum generation and non-zero graviton mass [Endlich et al., 2013, Bartolo et al, 2015]

additional GWs production next to

 $\mathcal{L} = \mathcal{L}_{\text{inflaton}} + \mathcal{L}_{\text{spectator}}$

 Auxiliary scalars with time-varying masses : [Chung et al., 2000, Senatore et al, 2011, Pearce et al, 2016]

 $\mathcal{L}_{\text{spectator}} \supset \sum \chi^2_i \left(\phi - \phi_i \right)^2$

- Spectator fields with small sound speed [Biagetti, Fasiello, Riotto 2012, Biagetti, ED, Fasiello, Peloso 2014] $\mathcal{L}_{\text{spectator}} \supset P(X, \sigma)$ *i*
- Axions and gauge fields [Sorbo 2011, Mukohyama et al. 2012-2014, ED-Fasiello-Fujita 2016, …] $\mathcal{L}_{\text{spectator}} \supset \chi FF$

NEW FIELDS: overview of the approach

$$
\mathcal{L} = \mathcal{L}_{\text{inflaton}} + \mathcal{L}_{\text{spectator}}
$$

$$
\rho_{\text{inflaton}} \gg \rho_{\text{spectator}}
$$

$$
P_{\gamma, \text{vacuum}} \lesssim P_{\gamma, \text{spectator}}
$$

$$
\ddot{\gamma}_{ij}(\vec{k},t) + 3H\dot{\gamma}_{ij}(\vec{k},t) + k^2 \gamma_{ij}(\vec{k},t) = \underbrace{\left(\frac{2}{M_P^2} \Pi_{ij}^{TT}(\vec{k},t)\right)}_{a^2 \Pi_{ij} = T_{ij} - a^2 p \left(\delta_{ij} + \gamma_{ij}\right)}
$$

(anisotropic stress)

* Main challenge:

sourcing tensors to observable level without badly affecting scalar sector!

AXION-GAUGE FIELDS MODELS: GENESIS/MOTIVATION

• Generic requirement for inflation: nearly flat potential: ϵ , $|\eta| \ll 1$

$$
\epsilon \equiv \frac{M_p^2}{2} \left(\frac{V^{'}}{V} \right)^2, \ \eta \equiv M_p^2 \frac{V^{''}}{V}
$$

… but flatness may be spoiled by radiative corrections!

• Flatness protected by a (nearly exact) axionic shift symmetry $\phi \rightarrow \phi + c$

 $V(\varphi) = \Lambda^4 [1 - \cos{(\varphi/f)}]$ Spirit of Natural Inflation [Freese, Frieman, Olinto 1990]

7

• Agreement with observations requires: $(f \ge M_P)$

undesirable constraint on the theory [Kallosh, Linde, Susskind, 1995, Banks et al, 2003]

AXION-GAUGE FIELDS MODELS: GENESIS/MOTIVATION

• If also gauge fields are around (why not?) we must include C-S coupling:

$$
\mathcal{L}_{\rm inflaton}=-\frac{1}{2}\left(\partial\varphi\right)^2-V\left(\varphi\right)-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+\frac{\alpha}{4f}\varphi F^{\mu\nu}\tilde{F}_{\mu\nu}
$$

U(1) case:

$$
F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}
$$

$$
\tilde{F}^{\mu\nu} = -\frac{1}{2}\epsilon^{\mu\nu\alpha\beta}F_{\alpha\beta}
$$

 $A_+(\tau, k) \propto e^{\pi \xi}$

Gauge field quanta are produced by the rolling axion: \bullet

$$
\left[\partial_{\tau}^{2} + k^{2} \pm \frac{2k\xi}{\tau}\right] A_{\pm}(\tau, k) = 0
$$

$$
\xi \equiv \frac{\xi}{2fH}
$$

$$
\vec{A}(\tau, \mathbf{x}) = \sum_{\lambda = \pm} \int \frac{d^3k}{(2\pi)^{3/2}} \left[\vec{\epsilon}_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) A_{\lambda}(\tau, \mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{x}} + \text{h.c.} \right]
$$

 $\alpha\dot{\phi}$

[Anber, Sorbo 2009 - Barnaby, Peloso 2011, Barnaby, Namba, Peloso 2011]

AXION-GAUGE FIELDS MODELS: U(1)

- Gauge quanta in turn back-react on the background: $\ddot{\phi} + 3H\dot{\phi} + V^{'}$ $(\phi) = \frac{\alpha}{c}$ $\frac{\alpha}{f}\langle\vec{E}\cdot\vec{B}%$ $\left\langle \right\rangle$ $3H^2M_p^2 =$ 1 2 $\dot{\phi}^2 + V(\phi) + \frac{1}{2}$ 2 $\langle \vec{E}^2 + \vec{B}^2 \rangle$
- $\vec{B} =$ 1 $\overline{a^2}$ \vee \times $\vec{\nabla} \times \vec{A}$ \vec{E} $=-\frac{1}{a^2}$ $\frac{1}{a^2}\vec{A}$

- … as well as source scalar fluctuations:
	- $\left[\partial_{\tau}^2 + 2\mathcal{H}\partial_{\tau} \nabla^2 + a^2m^2\right]$ $\delta\varphi(\tau,\mathbf{x}) = a^2 \frac{\alpha}{r}$ *f* $\sqrt{2}$ $\vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle$ $\left\langle \right\rangle$ $\sqrt{2}$

$$
\delta\varphi(\tau, \mathbf{x}) = \delta\varphi_{\text{vac}}(\tau, \mathbf{x}) + \delta\varphi_{\text{sourced}}(\tau, \mathbf{x})
$$

homogeneous particular

… and tensor fluctuations:

$$
\left[\partial_{\tau}^2+2\mathcal{H}\partial_{\tau}-\nabla^2\right]h_{ij}=-\frac{2a^2}{M_p^2}\left(E_iE_j+B_iB_j\right)^{TT}
$$

[Anber, Sorbo 2009 - Barnaby, Peloso 2011, Barnaby, Namba, Peloso 2011]

AXION-GAUGE FIELDS MODELS: U(1)

Power spectra:

$$
P_{\zeta}(k) = \mathcal{P}\left(\frac{k}{k_0}\right)^{n_s - 1} \left[1 + \mathcal{P}f_2(\xi)e^{4\pi\xi}\right]
$$

$$
P_{\gamma} = P_{\gamma,L} + P_{\gamma,R} \simeq \frac{2H^2}{\pi^2 M_p^2} \left(\frac{k}{k_0}\right)^{n_T} \left[1 + \frac{H^2}{M_p^2} f_{\gamma,L}(\xi)e^{4\pi\xi}\right]
$$

Scalar bispectrum: the sourced scalar fluctuation is a convolution of $\begin{array}{c}\n\bullet \\
\bullet\n\end{array}$ two gauge field fluctuations \longrightarrow non-Gaussian field!

> In the regime where sourced GWs dominate over vacuum GWs, non-Gaussianity becomes too large

> > [Anber, Sorbo 2009 - Barnaby, Peloso 2011, Barnaby, Namba, Peloso 2011]

AXION-GAUGE FIELDS MODELS: non-Abelian case [Adshead, Wyman 2011]

$$
\mathcal{L}_{\text{inflaton}}=-\frac{1}{2}\left(\partial\chi\right)^{2}-U(\chi)-\frac{1}{4}FF+\frac{\lambda\chi}{4f}F\tilde{F}
$$

isotropic background: $A_i^a = \delta_i^a a(t) Q(t)$ $A_0^a = 0$

$$
F_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} - g\epsilon^{abc}A_{\mu}^{b}A_{\nu}^{c}
$$

$$
U(\chi) = \mu^{4}[1 + \cos(\chi/f)]
$$

BACKGROUND EVOLUTION :

- Equations of motion for inflaton and gauge field are coupled \blacklozenge
- Gauge field provides a damping term in the equation of motion \blacklozenge of the axion, which effectively flattens its potential

AXION-GAUGE FIELDS MODELS: non-Abelian case

[Adshead - Wyman 2011, ED - Fasiello - Tolley 2012, ED - Peloso 2012]

 $x \approx -k\tau$

• Scalar perturbations:

gauge-field $\{\delta \chi\, ,\, \delta Q,\, \delta M\}$ inflaton

$$
\partial_x^2 \Delta_i - 2K_{ij}\partial_x \Delta_j + \left(\Omega_{ij}^2 - \partial_x K_{ij}\right) \Delta_j = 0
$$

- scalar fluctuations undergo tachyonic growth for $m_Q \equiv gQ/H < \sqrt{g}$ 2
- power spectrum amplitude for curvature pert. dominated by $\delta \chi$

AXION-GAUGE FIELDS MODELS: non-Abelian case

[Adshead - Wyman 2011, ED - Fasiello - Tolley 2012, ED - Peloso 2012]

• Tensor perturbations:

metric gauge field $\xi =$ $\lambda \dot{\chi}$ $2fH$ $x \approx -k\tau$ $FF \supsetneq g \epsilon^{ijk} A_i A_j \partial A_k$ $\chi F\tilde{F} \supset \epsilon^{ijk}\dot{\chi}A_{i}\partial_{j}A_{k}$ $\Psi_{R,L}^{''}$ + $\left(1-\frac{2}{r^2}\right)$ *x*2 ◆ $\Psi_{R,L} = \mathcal{O}^{(1)}\left(t_{R,L}\right)$ $t^{''}_{R,L} +$ $\sqrt{ }$ $1 +$ $2m_Q\xi$ $\frac{1}{x^2}$ + 2 $\frac{1}{x}(m_Q + \xi)$ $\overline{1}$ $\begin{cases} \Psi_{R,L} + \left(1 - \frac{1}{x^2}\right) \Psi_{R,L} = \mathcal{O}^{(1)}(t_{R,L}) \ \mu''_{R,L} + \left[1 + \frac{2m_Q\xi}{x^2} \mp \frac{2}{x}(m_Q + \xi)\right] t_{R,L} = \tilde{\mathcal{O}}^{(1)}(\Psi_{R,L}) \end{cases}$ linear mixing linear mixills
(unlike Abelian case!) $\{ \Psi_{R,L} \, , \, t_{R,L} \, \}$

one of the two polarization of the gauge field undergoes transient growth, hence the corresponding polarization of the metric is amplified!

AXION-GAUGE FIELDS MODELS: non-Abelian case [Adshead - Martinec -Wyman 2013]

• Comparison with observations:

Tensors are overproduced in the region of parameter space where the spectral index for scalar fluctuations is within experimental bounds

WHERE WE ARE AT SO FAR:

- Axion+gauge field models are theoretically compelling and have an interesting phenomenology but difficult to reconcile with observations
- But do we want to give them up? Predictions are very distinctive:
	- alternative gravitational waves production
	- chiral signal
	- non-Gaussianity …

Possible way forward :

Eliminating direct coupling between inflaton and axion-gauge fields, making the latter a **spectator sector**

Proven to work both for Abelian and non-Abelian case, while introducing one more distinctive signature: non-conventional **spectral index**

Inflaton+[axion+U(1)]

$$
\mathcal{L}_{\text{inflaton}} = -\frac{1}{2} (\partial \varphi)^2 - V (\varphi) - \frac{1}{2} (\partial \chi)^2 - W (\chi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{\alpha}{4 f} \chi F^{\mu\nu} \tilde{F}_{\mu\nu}
$$

$$
W(\chi) = \frac{\Lambda^4}{2} [1 + \cos(\chi/f)]
$$

 $\delta A + \delta A \rightarrow \delta \phi$ weaker (gravitational strength)!!!

 $\delta A + \delta A \rightarrow \delta \chi$ + from direct coupling, but W<<V by assumption

 $\alpha\dot{\chi}$ • feature in the spectrum (relevant scale depends on slow-roll evolution of the axion)

 $\xi \equiv$

 $2fH$

chirality

 $\delta A + \delta A \rightarrow \gamma$

• interestingly large tensor nG

[Barnaby et al, 2012 - Namba et al, 2015 - Peloso et al 2016]

Inflaton+[axion+SU(2)] [ED-Fasiello-Fujita 2016]

$$
\mathcal{L} = \mathcal{L}_{\text{inflaton}} - \frac{1}{2} (\partial \chi)^2 - U(\chi) - \frac{1}{4} FF + \frac{\lambda \chi}{4f} F\tilde{F}
$$

$$
P_{\gamma, \text{vacuum}} \qquad \mathcal{L}_{\text{spectator}} \longrightarrow P_{\gamma, \text{sourced}}
$$

- Inflaton field dominates energy density of the universe
- Spectator sector contribution to curvature fluctuations negligible

Inflaton+[axion+SU(2)] [ED-Fasiello-Fujita 2016]

$$
\Psi''_{R,L} + \left(1 - \frac{2}{x^2}\right) \Psi_{R,L} = \mathcal{O}^{(1)}(t_{R,L})
$$
\n
$$
t''_{R,L} + \left[1 + \frac{2m_Q\xi}{x^2} \mp \frac{2}{x}(m_Q + \xi)\right] t_{R,L} = \tilde{\mathcal{O}}^{(1)}(\Psi_{R,L})
$$
\n
$$
A_i^a = \delta_i^a a(t) Q(t)
$$
\n
$$
m_Q = \frac{qQ}{H}
$$
\n
$$
\chi F \tilde{F} \supset \epsilon^{ijk} \chi A_i \partial_j A_k
$$
\n
$$
t = \frac{\lambda \chi}{2fH}
$$
\n
$$
t = \frac{\lambda \chi}{2fH}
$$
\n
$$
t = \frac{\lambda \chi}{2fH}
$$
\n
$$
t = \frac{1}{2fH}
$$
\n
$$
t = \frac{\lambda \chi}{2fH}
$$
\n
$$
t = \frac{1}{2fH}
$$

19

Inflaton+[axion+SU(2)] [ED-Fasiello-Fujita 2016]

Sourced GWs :

- can be easily **larger** than vacuum contributions \blacklozenge
- are **chiral** and spectrum can be **blue/bumpy** \bullet

Inflaton+[axion+SU(2)] [Thorne - Fujita - Hazumi - Katayama

- Komatsu - Shiraishi 2017, Agrawal - Fujita - Komatsu 2017]

• Forecasts for our ability to constrain r, scale dependence, chirality, tensor non-Gaussianity in this model (CMB, interferometers…)

See Ben's and Eiichiro's talks!!!

21

CONCLUSIONS AND OUTLOOK

Axion-gauge field models: rich phenomenology and potentially testable predictions

- Breaking standard r—H relation and Lyth bound
- Blue spectrum: interesting also for interferometers GWs search
- Chiral signal: expect non-zero TB, EB correlations
- Non-Gaussianity

CONCLUSIONS AND OUTLOOK

Axion-gauge field models: rich phenomenology and potentially testable predictions

- Breaking standard r—H relation and Lyth bound
- (Blue spectrum:) interesting also for interferometers GWs search
- Chiral signal: expect non-zero TB, EB correlations

Non-Gaussianity

Experiments should be on the lookout for . . .

CONCLUSIONS AND OUTLOOK

Axion-gauge field models: rich phenomenology and potentially testable predictions

- Breaking standard r—H relation and Lyth bound
- (Blue spectrum:) interesting also for interferometers GWs search
- Chiral signal: expect non-zero TB, EB correlations

Non-Gaussianity

Experiments should be on the lookout for . . .

Thank you!