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GWs FROM INFLATION
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Inflationary GWs : standard vacuum production 

• Energy scale of inflation: V 1/4
infl ⇡ 1016GeV (r/0.01)1/4

• Scalar field excursion (Lyth bound): ��/MP & (r/0.01)1/2

• Non-chiral:

H ⇡ 2⇥ 1013
p

r/0.01GeV

P�+ = P��

nT ' �2✏ = �r/8• Red tilt:
One or more of these predictions  
may be easily violated beyond  

the minimal set-up!• Gaussian



NEW SYMMETRIES NEW FIELDS
additional GWs production next to  

(irreducible) vacuum generation
breaking of space-diff invariance  

and non-zero graviton mass

Beyond standard vacuum fluctuations

L = L
inflaton

+ L
spectator

4

[Endlich et al., 2013, Bartolo et al, 2015]
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Axions and gauge fields

 Auxiliary scalars with time-varying masses :

Spectator fields with small sound speed

[Chung et al., 2000, Senatore et al, 2011, Pearce et al, 2016]

[Biagetti, Fasiello, Riotto 2012,  
Biagetti, ED, Fasiello, Peloso 2014]

[Sorbo 2011, Mukohyama et al. 2012-2014,  
ED-Fasiello-Fujita 2016, …]
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NEW FIELDS: overview of the approach

�̈ij(~k, t) + 3H �̇ij(~k, t) + k2�ij(~k, t) =
2

M2
P

⇧TT
ij (~k, t)

(anisotropic stress)

a2⇧ij = Tij � a2 p (�ij + �ij)

* Main challenge:   
   sourcing tensors to observable level without badly affecting scalar sector!

⇢
inflaton

� ⇢
spectator

L = L
inflaton

+ L
spectator

P�,vacuum . P�,spectator
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AXION-GAUGE FIELDS MODELS: GENESIS/MOTIVATION
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    … but flatness may be spoiled by radiative corrections!

Generic requirement for inflation: nearly flat potential:  ✏, |⌘| ⌧ 1

V (') = ⇤

4
[1� cos ('/f)]

� ! �+ cFlatness protected by a (nearly exact) axionic shift symmetry
Spirit of Natural Inflation [Freese, Frieman, Olinto 1990]

f & MPAgreement with observations requires:	

undesirable constraint on the theory
[Kallosh, Linde, Susskind, 1995, Banks et al, 2003]
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AXION-GAUGE FIELDS MODELS: GENESIS/MOTIVATION

If also gauge fields are around (why not?) we must include C-S coupling:

Fµ⌫ = @µA⌫ � @⌫Aµ

F̃µ⌫ = �1

2
✏µ⌫↵�F↵�

[Anber, Sorbo 2009 - Barnaby, Peloso 2011, Barnaby, Namba, Peloso 2011]
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4 f
'Fµ⌫ F̃µ⌫

Gauge field quanta are produced by the rolling axion: 
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U(1) case:
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AXION-GAUGE FIELDS MODELS: U(1)

[Anber, Sorbo 2009 - Barnaby, Peloso 2011, Barnaby, Namba, Peloso 2011]

Gauge quanta in turn back-react on the background:
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… and tensor fluctuations: 

… as well as source scalar fluctuations: 
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AXION-GAUGE FIELDS MODELS: U(1)

[Anber, Sorbo 2009 - Barnaby, Peloso 2011, Barnaby, Namba, Peloso 2011]

Power spectra:

Scalar bispectrum: the sourced scalar fluctuation is a convolution of  
two gauge field fluctuations             non-Gaussian field!  

In the regime where sourced GWs dominate over  
vacuum GWs, non-Gaussianity becomes too large
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AXION-GAUGE FIELDS MODELS: non-Abelian case

isotropic background:

Aa
i = �ai a(t)Q(t)

Aa
0 = 0

[Adshead, Wyman 2011]

Aa
µ SU(2) gauge field

� Inflaton}

U(�) = µ4
[1 + cos(�/f)]

F a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ � g✏abcAb

µA
c
⌫

Gauge field provides a damping term in the equation of motion  
of the axion, which effectively flattens its potential

Equations of motion for inflaton and gauge field are coupled
BACKGROUND EVOLUTION :
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AXION-GAUGE FIELDS MODELS: non-Abelian case

• Scalar perturbations:

[Adshead - Wyman 2011, ED - Fasiello - Tolley 2012, ED - Peloso 2012 ]

gauge-field
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power spectrum amplitude for curvature pert. dominated by ��
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AXION-GAUGE FIELDS MODELS: non-Abelian case
[Adshead - Wyman 2011, ED - Fasiello - Tolley 2012, ED - Peloso 2012 ]

• Tensor perturbations:

metric gauge field

⇠ =
��̇

2fH
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}
one of the two polarization of the gauge field undergoes transient  

growth, hence the corresponding polarization of the metric is amplified!

linear mixing  

(unlike Abelian case!)

{  R,L , tR,L }
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AXION-GAUGE FIELDS MODELS: non-Abelian case
[Adshead - Martinec -Wyman 2013]

• Comparison with observations:

Tensors are overproduced in the region of parameter space  
where the spectral index for scalar fluctuations  

is within experimental bounds



GAUGE-FLATION [Maleknejad, Sheikh-Jabbari, 2011]

[Namba, ED, Peloso, 2013]
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But do we want to give them up? Predictions are very distinctive:  
— alternative gravitational waves production  
— chiral signal  
— non-Gaussianity …

WHERE WE ARE AT SO FAR: 

Axion+gauge field models are theoretically compelling and have an  
interesting phenomenology but difficult to reconcile with observations

Eliminating direct coupling between inflaton and axion-gauge fields,  
making the latter a spectator sector 

Possible way forward :

Proven to work both for Abelian and non-Abelian case, while introducing  
one more distinctive signature: non-conventional spectral index
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Inflaton+[axion+U(1)]

[Barnaby et al, 2012 - Namba et al, 2015 - Peloso et al 2016]
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�A+ �A ! �

�A+ �A ! �� weaker (gravitational strength)!!!

�A+ �A ! �� from direct coupling, but W<<V by assumption

feature in the spectrum (relevant scale depends  
on slow-roll evolution of the axion) 	
chirality	
interestingly large tensor nG
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Inflaton+[axion+SU(2)] [ED-Fasiello-Fujita 2016]

Inflaton field dominates energy density of the universe

Spectator sector contribution to curvature fluctuations negligible
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Inflaton+[axion+SU(2)] [ED-Fasiello-Fujita 2016]
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n

g, �⇤, f, H⇤, µ, �
o

example for 

Inflaton+[axion+SU(2)] [ED-Fasiello-Fujita 2016]

can be easily larger than vacuum contributions
Sourced GWs :

are chiral and spectrum can be blue/bumpy
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Inflaton+[axion+SU(2)] [Thorne - Fujita - Hazumi - Katayama  
- Komatsu - Shiraishi 2017,  
Agrawal - Fujita - Komatsu 2017]

• Forecasts for our ability to constrain r, scale dependence,  
chirality, tensor non-Gaussianity in this model  
(CMB, interferometers…) 

See Ben’s and Eiichiro’s talks!!!
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CONCLUSIONS AND OUTLOOK

Breaking standard r—H relation and Lyth bound	

Blue spectrum: interesting also for interferometers GWs search	

Chiral signal: expect non-zero TB, EB correlations	

Non-Gaussianity

Axion-gauge field models:  
rich phenomenology and potentially testable predictions
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Experiments should  
be on the lookout for . . .
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Thank you!


