

Probing Inflation and Reionization with Large-Scale CMB Polarization

Vinícius Miranda

Department of Physics and Astronomy University of Pennsylvania

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Part I - The Epoch Of Reionization

First stars: source of ionizing radiation

Difficult to model: radiative transfer + big volume

One of the least understood aspects of cosmology

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

How Can We Probe The EOR?

Better than Cosmic VarianceMeasure more than total optical depthAtmosphere limits redshift rangeLimitations: Cosmic Variance

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Hypothesis: The Instantaneous Reionization Model

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Hypothesis: The Instantaneous Reionization Model

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Beyond IRM: Principal Components Analysis

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

PCA: Completeness

5 PCs are complete!

Complete in polarization

error < cosmic variance

Probing Inflation and Reionization with Large-Scale CMB Polarization

B-MODE from Space - Berkeley

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

PCA Results On The EOR

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

PCA Results On The EOR

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

PCA Results On The EOR

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

PCA Results On The EOR

What the polarization spectrum look like?

Presence of high redshift sources does **NOT** imply unreasonable tau

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

PCA: Completeness

Forward Modeling Only

Can models with metal-free stars be the source of the high redshift signal?

Chen He V. Miranda Wayne Hu

Adam Lidz

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Source Of High Redshift Ionization: Pop-III?

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Source Of High Redshift Ionization: Pop-III?

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Source Of High Redshift Ionization: Pop-III?

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Make Results Useful to Everyone: PCA Fast Likelihood

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Make Results Useful to Everyone: PCA Fast Likelihood

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Make Results Useful to Everyone: PCA Fast Likelihood

$$\mathcal{L}_{PC}(\text{data} \mid \mathbf{m}) = \sum_{i=1}^{N} w_i K_f(\mathbf{m} - \mathbf{m}_i)$$

Good: fast (no CAMB)

Bad: needed ~10x more chain points than normal convergence

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

What Our Results Means for 21-cm, neutrinos, CMB-S4...

$$\tau_{\rm PC}(z=15, z_{\rm max})=0.033$$

- CMB-S4: neutrino mass constraints with lensing
- Optical Depth is one of the highest sources of error
- 21-cm claims they can measure tau better than CV
- This claim will fail if our result is not due to systematics

Probing Inflation and Reionization with Large-Scale CMB Polarization

B-MODE from Space - Berkeley

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Part II - Inflationary Features

Georges Obied

Cora Dvorkin

Chen He

Wayne Hu

V. Miranda

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

The Generalized Slow-Roll Approximation

$$\ln \Delta_{\mathcal{R}}^2 = I_0(k) + \ln[1 + I_1^2(k)]$$

Cora Dvorkin

Wayne Hu

Single kernel encompasses power spectrum observables

 $I_j(k) \propto \int d\ln s W_j(ks) \mathbf{G'}(\ln s)$

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Kernel Expansion: Non-Parametric Spline Basis

$$G'(\ln s) = (1 - n_s) + \sum_i B_i (\ln s) w_i$$

<u>SB</u>: more efficient than PCAs for localized features

V. Miranda C. Dvorkin W. Hu

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

WMAP/Planck I~20 Features on Temperature Spectrum

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Features Affect Inferences On The Hubble Constant

Features in inflation impact H0 predictions (especially if Imax < 1000)

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

WMAP/Planck I~20 Features On TE Spectrum

Also impacts TE -> what about reionization?

Vinicius Miranda, Postdoctoral Researcher, University of Pennsylvania

Near Future: Combined Analysis (Stay Tuned)

B-MODE from Space - Berkeley - Vinicius Miranda

Conclusions

December 4, 2017