Single Pixel Setup

Results 00000000000000

Modeling the Frequency Dependence of Polarized Dust Foregrounds

> Brandon Hensley Jet Propulsion Laboratory California Institute of Technology

> Hensley & Bull arXiv:1709.07897

© 2017 California Institute of Technology.

Government sponsorship acknowledged.

B-Mode from Space Workshop December 4, 2017

Single Pixel Setup

Results 00000000000000

Frequency Dependence of Dust Emission

- What dust properties are likely to vary from sightline to sightline?
- 2 How do these properties affect the dust SED?
- $\textbf{3} \textbf{ SED variations} \rightarrow \textbf{frequency decorrelation}$

Single Pixel Setup

Results 00000000000000

Simple Parametric Model

Dust heated to temperature T_d emits as a modified blackbody

$$I_{\nu}^{\text{dust}} = \boldsymbol{A} \left(\frac{\nu}{\nu_{0}}\right)^{\beta} \boldsymbol{B}_{\nu} \left(\boldsymbol{T}_{d}\right)$$

A = How much dust? T_d = How hot is the dust? β = What is the dust made of?

Single Pixel Setup

Results 00000000000000

Polarization Primer

- Grains are **aspherical** and preferentially **aligned** with the local magnetic field
- Polarize starlight through absorption, re-radiate as polarized light in the IR

Single Pixel Setup

Results 0000000000000

Polarization Primer

- Grains are of different composition appear to have different polarization properties
- Silicate Features
 – Polarization detected
- Carbonaceous Features- Unpolarized

Key Questions

• Are modified blackbody parameterizations robust enough for realistic dust complexity?

• What dust complexities are most difficult for analysis and how can they be best mitigated?

Dust Polarization

Single Pixel Setup

Results 00000000000000

Single Pixel Paradigm

Work with one realization of all non-dust components in the microwave sky, set to representative amplitudes and SEDs

Dust Polarization

Single Pixel Setup

Results 00000000000000

The Microwave Sky in Intensity and Polarization

Single Pixel Setup

Results 00000000000000

Emission Components

Synchrotron

$$I_{\nu} = A_1 \left(\frac{\nu}{\nu_0}\right)^{\beta}$$

Free-free

$$I_{\nu} = A_2 \left(\frac{\nu}{\nu_0}\right)^{-0.12}$$

Spinning Dust

$$I_{\nu} = A_3 \left(\frac{\nu}{\nu_0}\right)^2 \exp\left[1 - \left(\nu/\nu_{\rm pk}\right)^2\right]$$

Single Pixel Setup

Results 00000000000000

Spinning Dust Polarization

Spinning dust emission effectively unpolarized Draine and Hensley 2016

Single Pixel Setup

Results 00000000000000

Single Pixel Paradigm

- Work with one realization of all non-dust components in the microwave sky, set to representative amplitudes and SEDs
- 2 Employ a suite of dust models encompassing a range of dust physics

Dust Polarization

Single Pixel Setup

Results 00000000000000

A Suite of Dust Models

Single Pixel Paradigm

- Work with one realization of all non-dust components in the microwave sky, set to representative amplitudes and SEDs
- 2 Employ a suite of dust models encompassing a range of dust physics
- Semploy a suite of mock instruments measuring in seven log-spaced frequency bins

$$\begin{split} \nu_{min} &= \{20, 30, 40\}\,\text{GHz} \\ \nu_{max} &= \{300, 400, 500, 600, 700, 800\}\,\text{GHz} \end{split}$$

Single Pixel Paradigm

- Work with one realization of all non-dust components in the microwave sky, set to representative amplitudes and SEDs
- 2 Employ a suite of dust models encompassing a range of dust physics
- Semploy a suite of mock instruments measuring in seven log-spaced frequency bins
- Add noise based on forecasts for next-generation CMB experiments (100 realizations)
- **5** Perform component separation

Single Pixel Setup

Results 00000000000000

Fitting Functions

One component MBB

$$I_{\nu}^{\text{dust}} = \boldsymbol{A} \left(\frac{\nu}{\nu_{0}}\right)^{\beta} \boldsymbol{B}_{\nu} \left(\boldsymbol{T}_{\boldsymbol{d}}\right)$$

Two component MBB

$$I_{\nu}^{\text{dust}} = A_{1} \left(\frac{\nu}{\nu_{0}}\right)^{\beta_{1}} B_{\nu} \left(T_{d,1}\right) + A_{2} \left(\frac{\nu}{\nu_{0}}\right)^{\beta_{2}} B_{\nu} \left(T_{d,2}\right)$$

Single Pixel Setup

Results 00000000000000

Component Separation

Input: 14 data points (Q and U in seven frequencies) Fit with MBB dust

2 Fit with 2MBB dust

Perform MCMC fit for each band configuration (18), dust input model (7), dust fit model (2), and noise realization (100) (that's over 25,000 MCMCs)

Introduction o	Dust Polarization	Single Pixel Setup	Results ●oooooooooooo
Results			

Let's step through the results for each input dust model one by one

Single Pixel Setup

Results oeoooooooooooo

Two Kinds of Dust

- Dust may not be homogeneous
 – empirical and physical models suggest (at least) two distinct kinds of dust, silicate and carbonaceous
- Model each component with its own β (1.6 and 1.8) and T (15 and 24 K), one polarized and one not

Dust Polarization

Single Pixel Setup

Results oo●oooooooooo

Fit Results

Single Pixel Setup

Results 000e00000000

Beware the Temperature Prior!

Dust component dominating in total intensity may not be the same as that dominating the polarization

Magnetic Dust

- Interstellar grains found by Stardust and Cassini were amorphous silicate with iron inclusions
- Ferromagnetic iron can be emissive in the microwave due to magnetic effects (Draine & Hensley 2012, 2013)
- Polarized emission from magnetic iron is **orthogonal** to polarized emission from non-magnetic grains, resulting in a unique polarization signature

Dust Polarization

Single Pixel Setup

Results 0000000000000

A Suite of Dust Models

Dust Polarization

Single Pixel Setup

Results oooooo●oooooo

Fit Results

Single Pixel Setup

Results ooooooooooooo

Best Fit Model

Single Pixel Setup

Results ○○○○○○●○○○○

Cloud Model

Tassis & Pavlidou 2015

Single Pixel Setup

Results

Frequency Decorrelation

- Even if you know what the dust is doing at one frequency, hard to extrapolate to other frequencies due to the non-trivial way polarizations sum
- Big threat to template-based component separation techniques
- Hints present in the *Planck* data; fully expected from theory, just a matter of what level

Dust Polarizatior

Single Pixel Setup

Results ○○○○○○○○●○○

Fit Results

Single Pixel Setup

Results ○○○○○○○○○○○

CMB Polarization Angle

Summary

- Intuition built in temperature does not necessarily carry over to polarization
- 2 Line of sight effects (decorrelation!) and iron grains are the most pernicious complexities for biasing the fit CMB
- Biases described here can be mitigated with different analysis techniques and/or ancillary data, but should be demonstrated!