
Foregrounds cleaning for LiteBIRD with  
xForecast-multipatch and SMICA

Josquin Errard 
Maude Le Jeune  
Radek Stompor

1

B-MODE FROM SPACE WORKSHOP
SECOND MEETING AT THE UNIVERSITY OF CALIFORNIA, BERKELEY

4 Dec 2017

complementary slides from the San Diego workshop: 
https://www.dropbox.com/s/2hpof74eje9dkjg/foregrounds_workshop.pdf?dl=0

https://www.dropbox.com/s/2hpof74eje9dkjg/foregrounds_workshop.pdf?dl=0


J. Errard — B-modes from space — Berkeley — 4 Dec, 2017

•  we show consistency between xForecast and SMICA on 
constant spectral indices and PySM simulations

• spatial variability of dust is important to characterize, and 
high frequency channels are crucial
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+ focal plane sensitivity has been updated

✔
✔

✔
✔
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LF-1

LF-2

MF-1

MF-2

6

LFT - baseline design

LFT - LF enhanced design

HFT - LO-HFT300 Band Center
Freq
[GHｚ]

Freq BW Pixel
diameter
[mm]

Num
Pix

Num
Det

MF-2 119 0.3 7.7 364 728

MF-4 166 0.3 7.7 364 728

MF-6 235 0.3 7.7 364 728

HF-1 280 0.3 3.9 271 542

HF-2 337 0.3 3.4 331 662

HF-3 402 0.23 2.7 469 938

HF-1 HF-2 HF-3

95 190

95 190
95 190

76 152
76 152
76 152

Proposal for Focal Plane Design

3bands MF2,4,6 on 
each wafer

Single band horn

3

LiteBIRD assumed specifications

HF-1-2-3
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data modeling
for each sky pixel: n
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Method — xForecast
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di(p) = Aij sj(p) + ni(p)

d A(β)
s
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data modeling
for each sky pixel:

1. estimation of the mixing matrix A

max (L(�))A ⌘ A(� = �d,�s, ...)

not perfect 
recovery of input 

spectral 
parameters ➤ 
foregrounds 

residuals

Araw
sync(⌫, ⌫ref) ⌘

✓
⌫

⌫ref

◆�s

Araw
dust(⌫, ⌫ref) ⌘

✓
⌫

⌫ref

◆�d+1 e
h⌫ref
k Td � 1

e
h⌫
kTd � 1

e.g. Stompor et al. (2009)

n

4

Method — xForecast
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di(p) = Aij sj(p) + ni(p)

d A(β)
s

= +

fr
eq

ue
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s

data modeling
for each sky pixel:

2. solve for s [rather general to any comp sep method]

s =
�
ATN�1A

��1
ATN�1d

linear combination 
of various frequency 
maps ➤ boosted 

noise

1. estimation of the mixing matrix A

max (L(�))A ⌘ A(� = �d,�s, ...)

not perfect 
recovery of input 

spectral 
parameters ➤ 
foregrounds 

residuals

Araw
sync(⌫, ⌫ref) ⌘

✓
⌫

⌫ref

◆�s

Araw
dust(⌫, ⌫ref) ⌘

✓
⌫

⌫ref

◆�d+1 e
h⌫ref
k Td � 1

e
h⌫
kTd � 1

e.g. Stompor et al. (2009)

n

4

Method — xForecast
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xForecast results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices) [ rsim=0 ]
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xForecast results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)

fsky=60%
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d

CMB

= +
fr

eq
ue

nc
ie

s
ndust

sync

A C
M

B

A d
us

t (
βd
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xForecast results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)

fsky=60%
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xForecast results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)
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xForecast results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)

`min � 15`min � 2

fsky=60%
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0.000642  
± 0.000804

0.00247  
± 0.00135

xForecast results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)
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Method — SMICA
SMICA pipeline
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SMICA results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)

s =
�
ATN�1A

��1
ATN�1d

W
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(6 CMB + noise simulations)

11

SMICA results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)

s =
�
ATN�1A

��1
ATN�1d

W
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0.00222  
± 0.000673

0.00247  
± 0.00135 

(Hessian: ± 0.000507)

12

0.000642  
± 0.000804 

(Hessian: ± 0.000792)

xForecast

SMICA 
(Hessian error bars)

`min � 15`min � 2

0.000565  
± 0.000728

since Montreal: 
• simplification of the foregrounds (spatial variation on 

nside=16): σ(r)=0.001 ➔ σ(r)=0.0009 
• new instrumental configuration: σ(r)=0.0009 ➔ σ(r)=0.0007

SMICA results on PySM — a1d1f1s1 simulation  
(nside=16 / 3.5deg spatial variations for spectral indices)
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bias ~ O(0.002) on r on the 
largest angular scales:


it is crucial to take into 
account the spatial variations 

of spectral indices in the 
analysis
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spatial variations of the spectral indices in the PySM templates
βd βs Td

14

Δβd/βd 
~1.6%

Δβs/βs 
~1.5%

ΔTd/Td 
~6.7%
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sest. ⌘ Wdin

) residuals ⌘ sest. � sin

' ��
@W

@�

����
�true

din

spatial variations of the spectral indices in the PySM templates

fsky=60%
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we should look for a balance between statistical and systematic errors 

STATISTICAL error 
bars on spectral 

parameters 

SYSTEMATIC error 
bars on spectral 

parameters 
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we should look for a balance between statistical and systematic errors 

STATISTICAL error 
bars on spectral 

parameters 

SYSTEMATIC error 
bars on spectral 

parameters 

• better signal-to-noise 
(instrumental sensitivity, etc.) 

• few degrees of freedom 
• broad frequency range 
• large sky area (more pixels!)

⌃ ⌘

2

4
�(�d)2 �(�d)�(�s) �(�d)�(Td)

? �(�s)2 �(�s)�(Td)
? ? �(Td)2

3

5
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we should look for a balance between statistical and systematic errors 

STATISTICAL error 
bars on spectral 

parameters 

SYSTEMATIC error 
bars on spectral 

parameters 

• better signal-to-noise 
(instrumental sensitivity, etc.) 

• few degrees of freedom 
• broad frequency range 
• large sky area (more pixels!)

⌃ ⌘

2

4
�(�d)2 �(�d)�(�s) �(�d)�(Td)

? �(�s)2 �(�s)�(Td)
? ? �(Td)2

3

5

• more internal degrees of 
freedom (free spectral 
parameters, sky templates, etc.) 

• reduced frequency range 
• small sky area (less complexity!)

A(β)
s obs 

d≠
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Method — multipatch
βd βs Td

degrading/smoothing β maps down to nside= 2 / 4 / 8 / 16 

upgrading β maps to nside= 32

simulate frequency maps + CMB + noise

si
m

ul
at

io
n
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Method — multipatch
βd βs Td

degrading/smoothing β maps down to nside= 2 / 4 / 8 / 16 

upgrading β maps to nside= 32

simulate frequency maps + CMB + noise

si
m

ul
at

io
n

fit for {β} in each nside = 2 / 4 / 8 / 16 pixels, matching the input simulation

estimate foregrounds residuals and noise by combining 
contribution from each pixels

power spectrum estimation and likelihood on r

cl
ea

ni
ng 10

 s
im

s
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variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution

fsky=60%
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variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution

fsky=60%
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fit for {Bd} 
true {Bs,Td}

fit for {Bd,Bs} 
true {Td}

fit for 
{Bd,Bs,Td}

fit for {Bd,Td} 
true {Bs}

fit for {Bs} 
true {Bd,Td}

nside = 2  
(sim and 
cleaning) 

1.28e-05 ± 
0.000136

3.89e-05 ± 
0.000159

0.000466 ± 
0.000305

0.000229 ± 
0.000252

2.29e-05 ± 
0.000141

nside = 4  
(sim and 
cleaning) 

2.49e-05 ± 
0.000152

0.000108 ± 
0.000214

0.00183 ± 
0.000505

0.000883 ± 
0.000454

3.79e-05 ± 
0.000160

nside = 8  
(sim and 
cleaning) 

0.000224 ± 
0.000348

0.000677 ± 
0.000522

0.00755 ± 
0.000727

0.00345 ± 
0.000630

7.92e-05 ± 
0.000203

nside = 16  
(sim and 
cleaning) 

0.000351 ± 
0.000508

0.00475 ± 
0.000702

0.0217 ± 
0.000894

0.00978 ± 
0.000699

0.000614 ± 
0.000562

22

`min � 2

Results — multipatch on nside 2 ➔ 16
 = rbias < σ(r) < 0.001



J. Errard — B-modes from space — Berkeley — 4 Dec, 2017 23

is it possible to reduce 
the bias on r by modeling 
the foregrounds residuals 

and marginalizing over 
them?
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variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution

fsky=60%
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variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution
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fsky=60%
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Errard, Stivoli and Stompor (PRD, 2011)

Yet, we can semi-analytically estimate what are the statistical foregrounds 
residuals

Statistical error bars on spectral parameters:
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Errard, Stivoli and Stompor (PRD, 2011)

Yet, we can semi-analytically estimate what are the statistical foregrounds 
residuals

Statistical error bars on spectral parameters:

➔  estimated using the most extreme frequency channels of LiteBIRD (scaling 
them to 150GHz using the estimated spectral indices in each pixels)

Synchrotron and dust templates
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Errard, Stivoli and Stompor (PRD, 2011)

Yet, we can semi-analytically estimate what are the statistical foregrounds 
residuals

Statistical error bars on spectral parameters:
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Stivoli, Grain, Leach, Tristram, 
Baccigalupi, Stompor (MNRAS, 2010)

Amplitude of statistical foregrounds residuals:

➔  estimated using the most extreme frequency channels of LiteBIRD (scaling 
them to 150GHz using the estimated spectral indices in each pixels)

Synchrotron and dust templates
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PRELIMINARY modeled 
statistical 

foregrounds 
residuals

variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution

fsky=60%
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PRELIMINARY modeled 
statistical 

foregrounds 
residuals

variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution

fsky=60%



J. Errard — B-modes from space — Berkeley — 4 Dec, 2017 30

PRELIMINARY modeled 
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foregrounds 
residuals

variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution

fsky=60%
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previously 
⇩

after adding 
statistical 

foregrounds 
residuals model in 
the likelihood ℒ (r) 

fit for {Bd,Bs,Td} fit for {Bd,Bs,Td}

nside = 2  
(sim and cleaning) 0.000466 ± 0.000305 0.0000519 ± 0.000218

nside = 4  
(sim and cleaning) 0.00183 ± 0.000505 0.000189 ± 0.000320

nside = 8  
(sim and cleaning) 0.00755 ± 0.000727 0.000102 ± 0.000337

nside = 16  
(sim and cleaning) 0.0217 ± 0.000894 0.000447 ± 0.000491

 = rbias < σ(r) < 0.001

31
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Results — multipatch when deprojecting statistical 
foregrounds residuals 

`min � 2
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what about more 
complex skies?
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• spatial variations of spectral 
indices on nside=32 

• independent fit of 
{Bd,Bs,Td} in each patch 
with nside=16

PRELIMINARY

variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution
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• spatial variations of spectral indices on 
nside=32 

• constant synchrotron curvature in sims 
• independent fit of {Bd,Bs,Td} in each 

patch with nside=16 
• independent fit of {Bd,Bs,Td, sync 

curvature} in each patch with nside=16

PRELIMINARY

variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution
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is it possible to 
optimize the focal 

plane to reduce the 
foregrounds residuals?
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variations of {βd, βs, Td} on this healpix resolution
we perform component separation 

independently on this healpix resolution

C stat res` / (�(�))2C fgs
`

fsky=60%
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Method — optimization of focal plane

• minimization of ||Σ(β)|| in each patch of the sky, for each 
simulations 

• variable is the number of pixels i.e. {LF-1, LF-2, MF-1, 
MF-2, HF-1, HF-2, HF-3}  

• we keep the area of the focal plane constant

||Σ(β)|| is the norm (I took it as the deteminant) of the error covariance 
on spectral indices.  
 
 
 
 
We approximate Σ using the analytical form of the spectral likelihood 
curvature (Errard+ 2012) — this is why the optimization is numerically 
easy.

⌃ ⌘

2

4
�(�d)2 �(�d)�(�s) �(�d)�(Td)

? �(�s)2 �(�s)�(Td)
? ? �(Td)2

3

5

37
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NEW FOCAL PLANE CONFIGURATION

38
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OPTIMIZED 
NEW FOCAL PLANE CONFIGURATION

σ(βd) improved by a factor ~ 2.0 
σ(βs) degraded by a factor ~ 0.9 
σ(Td) degraded by a factor ~ 2.1

but no significant 
effect on r  

:(

39
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• current LiteBIRD focal plane design can reach bias on r < σ(r) < 0.001 — 
considering input sky simulations with spatial variations of spectral indices over 
nside=16 scales:


• SMICA and xForecast agree on a r ~ 0.0006 ± 0.0007 when considering 
scales ℓ≥15


• Multipatch approach, combined with a deprojection of the statistical 
residuals, leads to r ~ 0.0004 ± 0.0005 (ℓ≥2)


• complicating the sky (spatial variations on nside=32 with synchrotron curvature) 
leads to r = 0.0007 ± 0.0007 (ℓ≥2). NB: synchrotron curvature leads to a strong 
bias if not fitted for in the modeling.

Conclusion - discussion 
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• current LiteBIRD focal plane design can reach bias on r < σ(r) < 0.001 — 
considering input sky simulations with spatial variations of spectral indices over 
nside=16 scales:


• SMICA and xForecast agree on a r ~ 0.0006 ± 0.0007 when considering 
scales ℓ≥15


• Multipatch approach, combined with a deprojection of the statistical 
residuals, leads to r ~ 0.0004 ± 0.0005 (ℓ≥2)


• complicating the sky (spatial variations on nside=32 with synchrotron curvature) 
leads to r = 0.0007 ± 0.0007 (ℓ≥2). NB: synchrotron curvature leads to a strong 
bias if not fitted for in the modeling.

Conclusion - discussion 

Next steps:

• unique and integrated framework including the estimation of {β} and 

the marginalization of ℒ (r) over statistical foregrounds residuals

• iterative patch finder — find optimal regions for each spectral index 

which would both optimize the statistical errors while minimizing the 
systematic bias. They would likely follow the morphology of the 
galactic foregrounds.


• build a consistent and common framework for SMICA and 
parametric pixel-based methods

Bd
Bs

Td
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BACKUP
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6

LFT - baseline design

LFT - LF enhanced design

HFT - LO-HFT300 Band Center
Freq
[GHｚ]

Freq BW Pixel
diameter
[mm]

Num
Pix

Num
Det

MF-2 119 0.3 7.7 364 728

MF-4 166 0.3 7.7 364 728

MF-6 235 0.3 7.7 364 728

HF-1 280 0.3 3.9 271 542

HF-2 337 0.3 3.4 331 662

HF-3 402 0.23 2.7 469 938

HF-1 HF-2 HF-3

95 190

95 190
95 190

76 152
76 152
76 152

Proposal for Focal Plane Design

3bands MF2,4,6 on 
each wafer

Single band horn

42

LiteBIRD assumed specifications
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xForecast  
B-modes from space — 
Montreal 2017
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if one does not 
taken into 

account the 
spatial 

variations of 
spectral 
indices!

from βd

from βs

from Td
from βd, βs, Td

sest. ⌘ Wdin

) residuals ⌘ sest. � sin

' ��
@W

@�

����
�true

din

1-σ statistical foregrounds 
residuals when fitting for dust 
and synchrotron spectral 
indices, {βd,βs}, in each pixel 
of a healpix sky with nside=4

Foregrounds residuals due spatial variability of spectral indices, 
in the case of LiteBIRD
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Balance between statistical and systematic errors 

STATISTICAL error 
bars on spectral 

parameters 

SYSTEMATIC error 
bars on spectral 

parameters 

• better signal-to-noise (instrumental 
sensitivity, more sky pixels to count 
on for a given spectral index, etc.) 

• broad frequency range 
• large sky area (more pixels!)

• more internal degrees of 
freedom (free spectral 
parameters, sky templates, etc.) 

• reduced frequency range 
• small sky area (less complexity!)

⌃ ⌘

2

4
�(�d)2 �(�d)�(�s) �(�d)�(Td)

? �(�s)2 �(�s)�(Td)
? ? �(Td)2

3

5 A(β)
s obs 

d≠
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sest. ⌘ Wdin

) residuals ⌘ sest. � sin

' ��
@W

@�

����
�true

din

1-σ statistical foregrounds 
residuals when fitting for dust 
and synchrotron spectra l 
indices, {βd,βs,Td}, in each pixel 
of a healpix sky with nside=16
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fit for {Bd} 
true {Bs,Td}

fit for {Bd,Bs} 
true {Td}

fit for 
{Bd,Bs,Td}

fit for {Bd,Td} 
true {Bs}

fit for {Bs} 
true {Bd,Td}

nside = 2  
(sim and 
cleaning) 

1.53e-05 ± 
0.000562

3.11e-05 ± 
0.000570

0.000207 ± 
0.000579

0.000160 ± 
0.000572

1.22e-05 ± 
0.000562

nside = 4  
(sim and 
cleaning) 

8.85e-05 ± 
0.000563

0.000217 ± 
0.000572

0.00129 ± 
0.000600

0.000870 ± 
0.000574

7.60e-05 ± 
0.000565

nside = 8  
(sim and 
cleaning) 

0.000937 ± 
0.000583

0.000141 ± 
0.000595

0.00737 ± 
0.000670

0.00381 ± 
0.000643

0.000498 ± 
0.000581

nside = 16  
(sim and 
cleaning) 

0.00169 ± 
0.000608

0.00558 ± 
0.000795 0.0221 ± 0.00132 0.0104 ± 0.00107 0.00187 ± 

0.000626

 = σ(r) < 0.001 and rbias < σ(r)

47
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•  we show consistency between xForecast and SMICA on 
constant spectral indices and PySM simulations

• spatial variability of dust is important to characterize, and 
high frequency channels are crucial

Excerpt of our conclusions in Montreal 2017

VERY PRELIMINARY 
independent patches 

analysis

extra template for spatially 
varying dust


