B-MODE FROM SPACE WORKSHOP SECOND MEETING AT THE UNIVERSITY OF CALIFORNIA, BERKELEY

4 Dec 2017

Foregrounds cleaning for LiteBIRD with *xForecast-multipatch* and *SMICA*

complementary slides from the San Diego workshop: <u>https://www.dropbox.com/s/2hpof74eje9dkjg/foregrounds_workshop.pdf?dl=0</u>

Josquin Errard Maude Le Jeune Radek Stompor

Conclusions / to-do items after Montreal meeting (Jan 2017)

- we show consistency between xForecast and SMICA on constant spectral indices and PySM simulations
- spatial variability of dust is important to characterize, and high frequency channels are crucial

Conclusions / to-do items after Montreal meeting (Jan 2017)

- we show consistency between xForecast and SMICA on constant spectral indices and PySM simulations
- spatial variability of dust is important to characterize, and high frequency channels are crucial

TO DO:

- develop a multipatch approach for xForecast
- explore the possibility of focal plane optimization
- improve marginalization over residuals
- continue comparison between the two approaches

Conclusions / to-do items after Montreal meeting (Jan 2017)

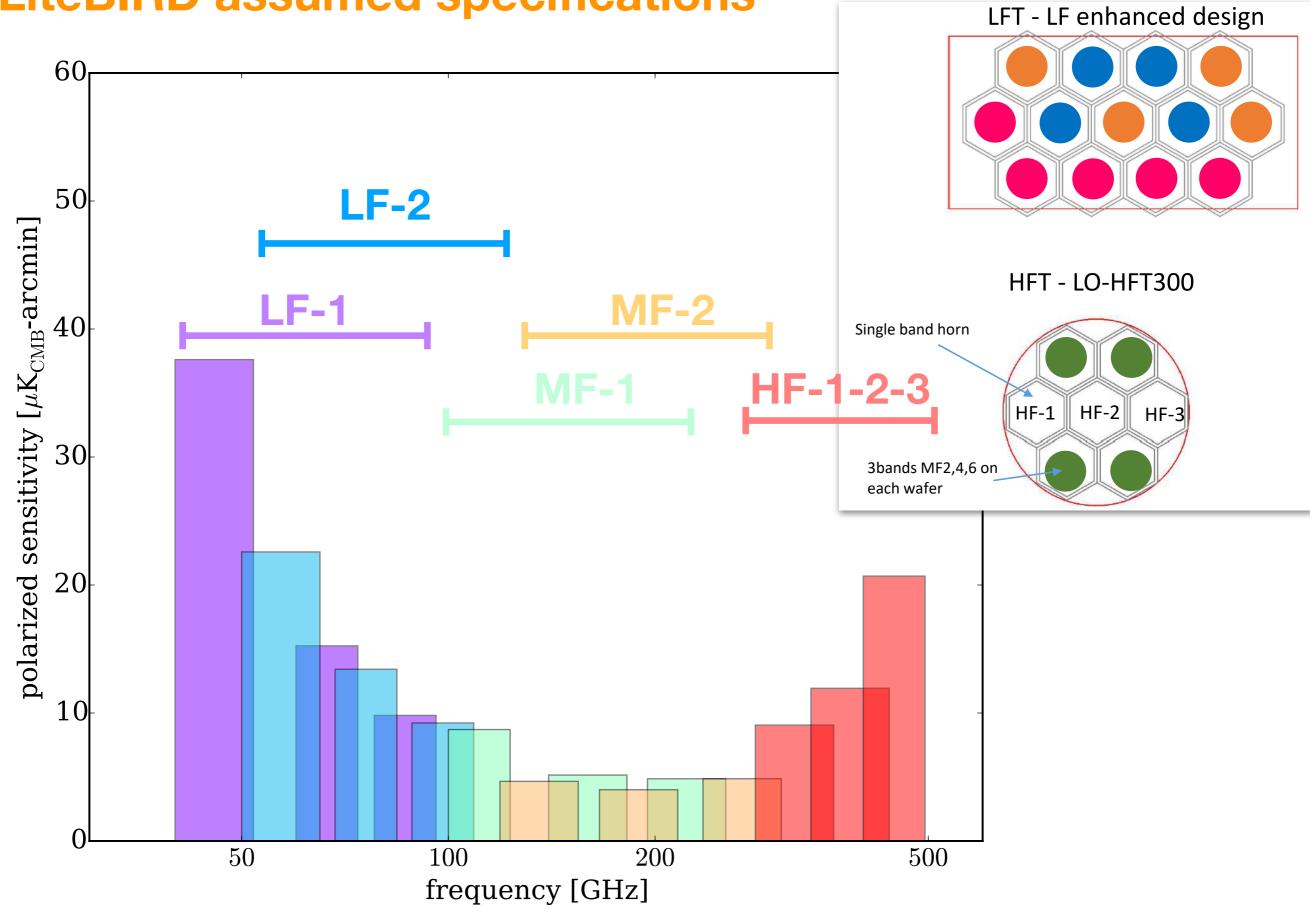
- we show consistency between xForecast and SMICA on constant spectral indices and PySM simulations
- spatial variability of dust is important to characterize, and high frequency channels are crucial

TO DO:

- develop a multipatch approach for xForecast
- explore the possibility of focal plane optimization
- improve marginalization over residuals
- continue comparison between the two approaches

+ focal plane sensitivity has been updated

LiteBIRD assumed specifications



J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

Method – xForecast

data modeling

for each sky pixel:

$$d_i(p) = A_{ij} s_j(p) + n_i(p)$$

$$d = A(\beta) + n$$

Method – xForecast

I. estimation of the mixing matrix A $A_{\rm sync}^{\rm raw}(\nu,\nu_{\rm ref}) \equiv \left(\frac{\nu}{\nu_{\rm ref}}\right)^{\beta_s}$

$$A_{\text{dust}}^{\text{raw}}(\nu,\nu_{\text{ref}}) \equiv \left(\frac{\nu}{\nu_{\text{ref}}}\right)^{\beta_d+1} \frac{e^{\frac{h\nu_{\text{ref}}}{kT_d}} - 1}{e^{\frac{h\nu}{kT_d}} - 1}$$
$$\mathbf{A} \equiv \mathbf{A}(\beta = \beta_d, \beta_s, ...) \longrightarrow \max\left(\mathcal{L}(\beta)\right)$$

data modeling

for each sky pixel:

e.g. Stompor et al. (2009) not perfect

> recovery of input spectral parameters ≻ foregrounds residuals

 $d_i(p) = A_{ij} s_j(p) + n_i(p)$ $\mathbf{d} = \mathbf{A}(\beta) + \mathbf{n}$

J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

Method – xForecast

data modeling

$$d_i(p) = A_{ij} s_j(p) + n_i(p)$$

$$d = A(\beta) + n$$

I. estimation of the mixing matrix A

$$A_{\text{sync}}^{\text{raw}}(\nu,\nu_{\text{ref}}) \equiv \left(\frac{\nu}{\nu_{\text{ref}}}\right)^{\beta_s}$$

$$A_{\text{dust}}^{\text{raw}}(\nu,\nu_{\text{ref}}) \equiv \left(\frac{\nu}{\nu_{\text{ref}}}\right)^{\beta_d+1} \frac{e^{\frac{h\nu_{\text{ref}}}{kT_d}} - 1}{e^{\frac{h\nu}{kT_d}} - 1}$$

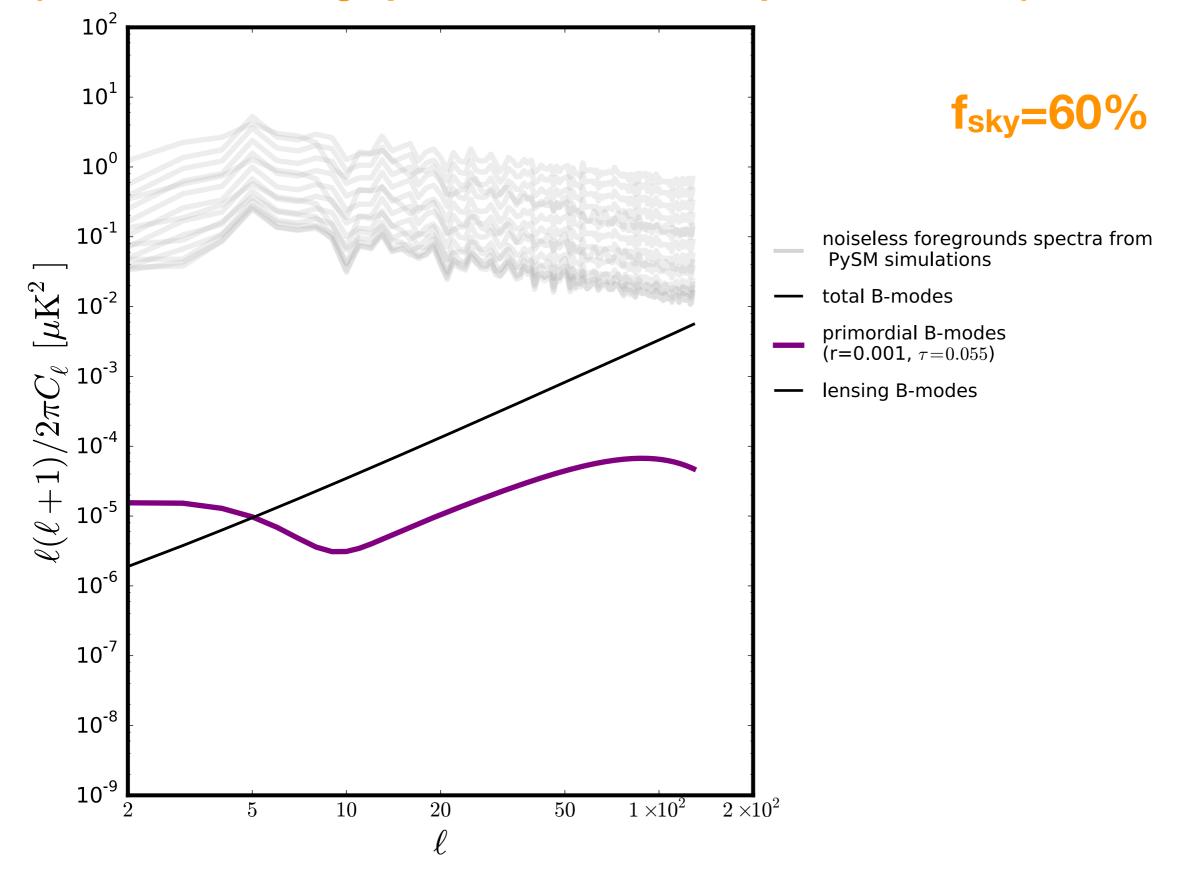
$$\mathbf{A} \equiv \mathbf{A}(\beta = \beta_d, \beta_s, ...) \longrightarrow \max(\mathcal{L}(\beta))$$
e.g. Stompor et al. (2009)
not perfect
recovery of input
spectral
parameters >
foregrounds
residuals

2. solve for s [rather general to any comp sep method]

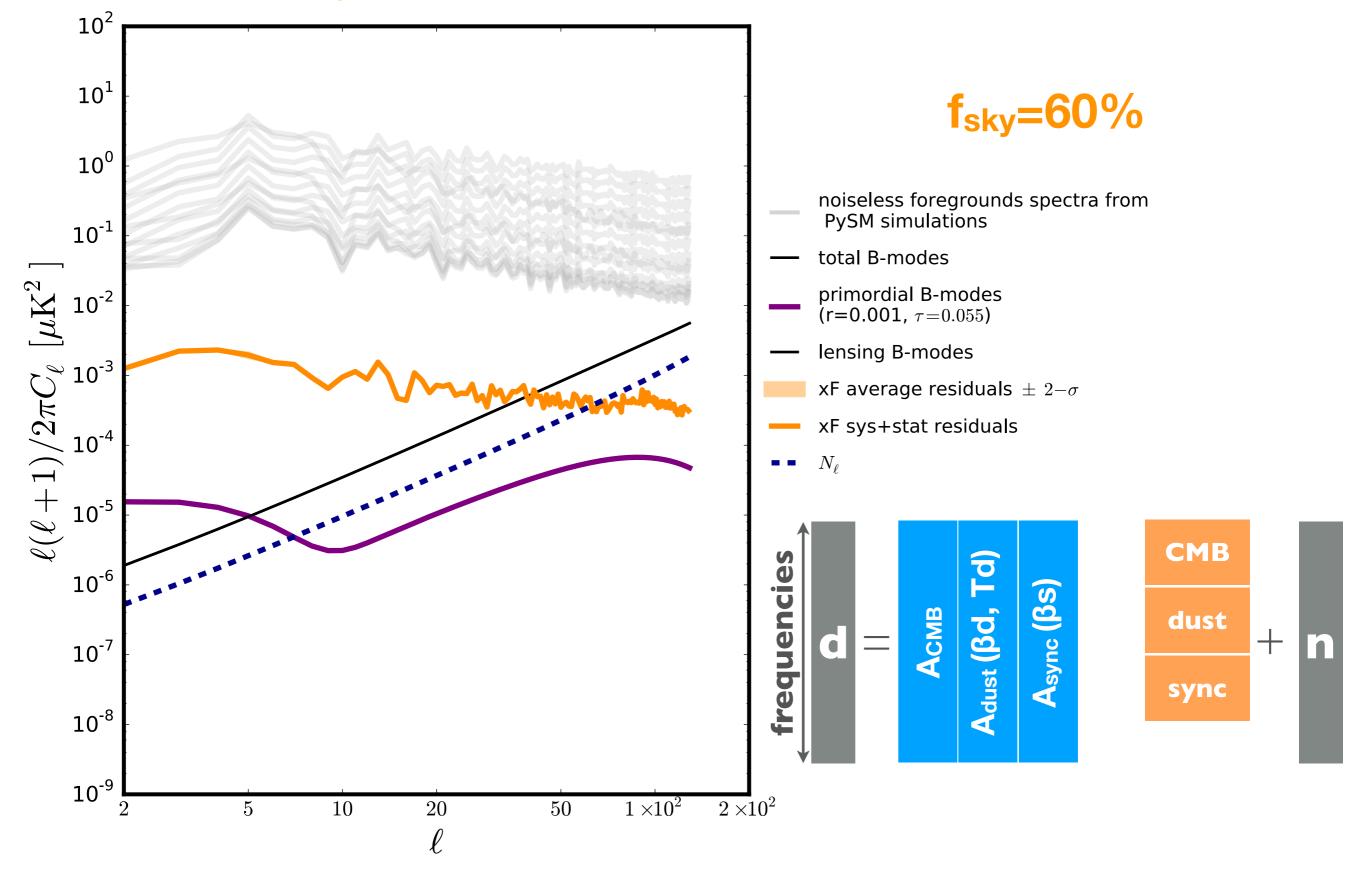
$$\mathbf{s} = \left(\mathbf{A}^T \mathbf{N}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{N}^{-1} \mathbf{d}$$

linear combination of various frequency maps ➤ boosted noise

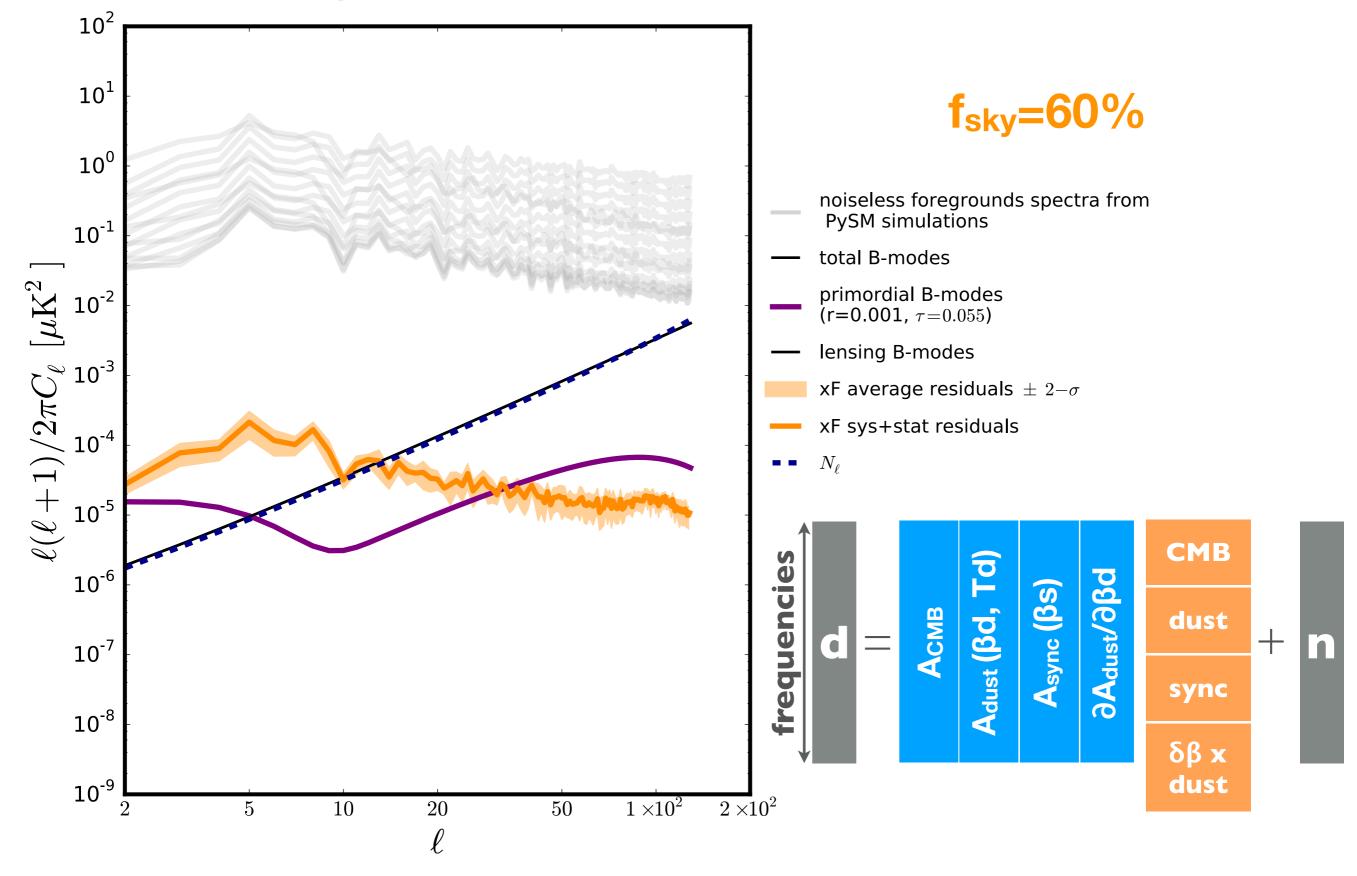
[r_{sim}=0]



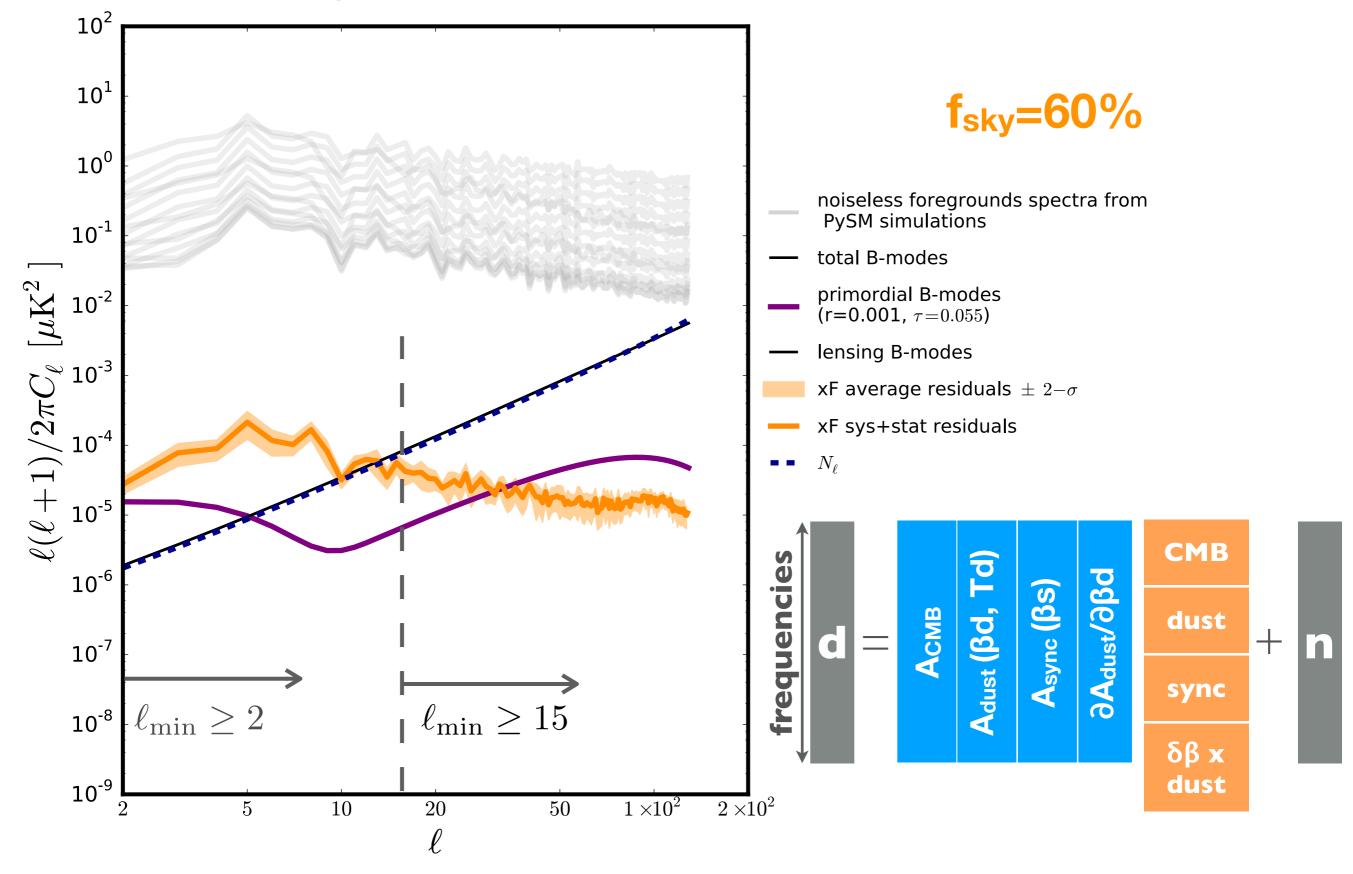
J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

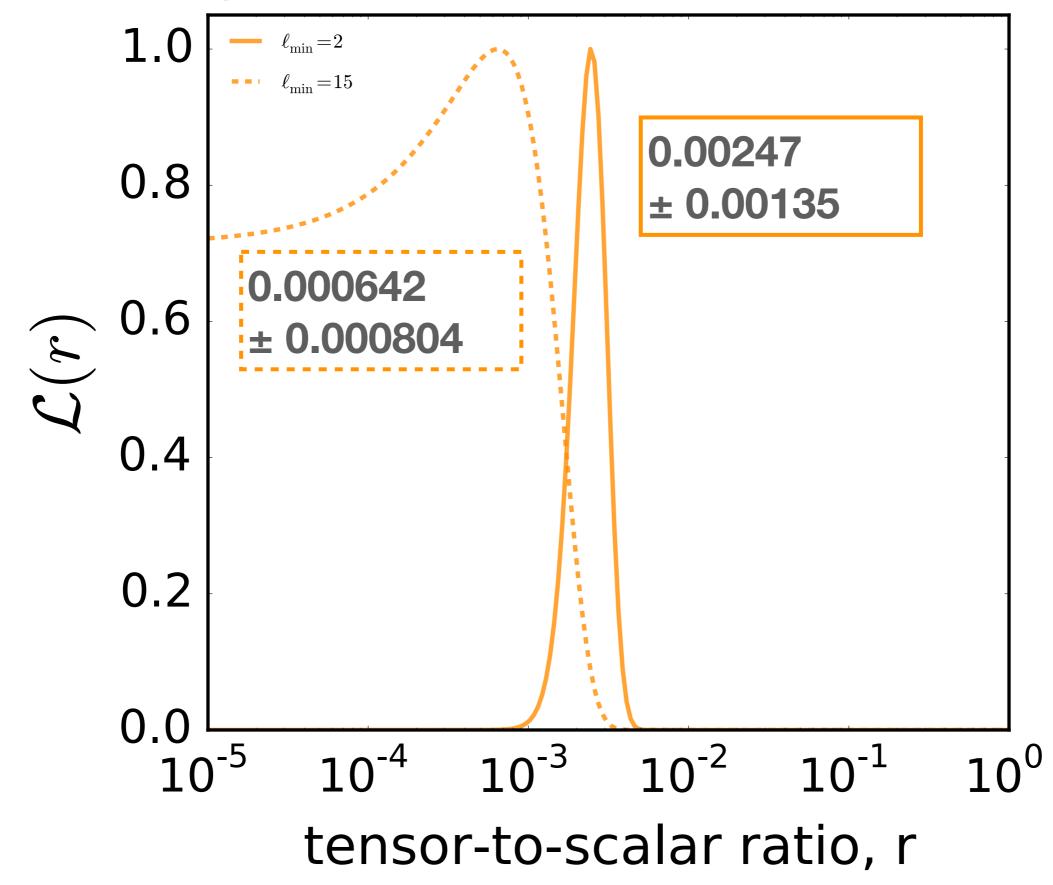


J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

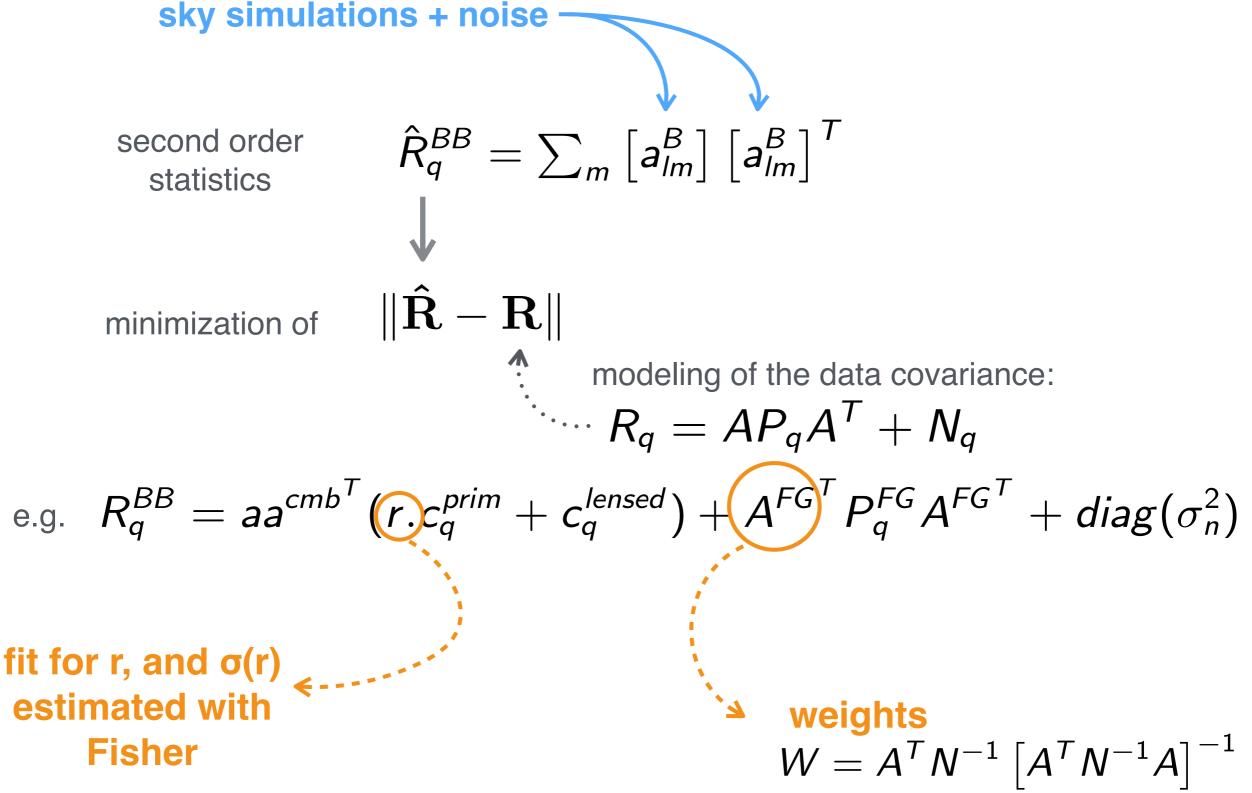


J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

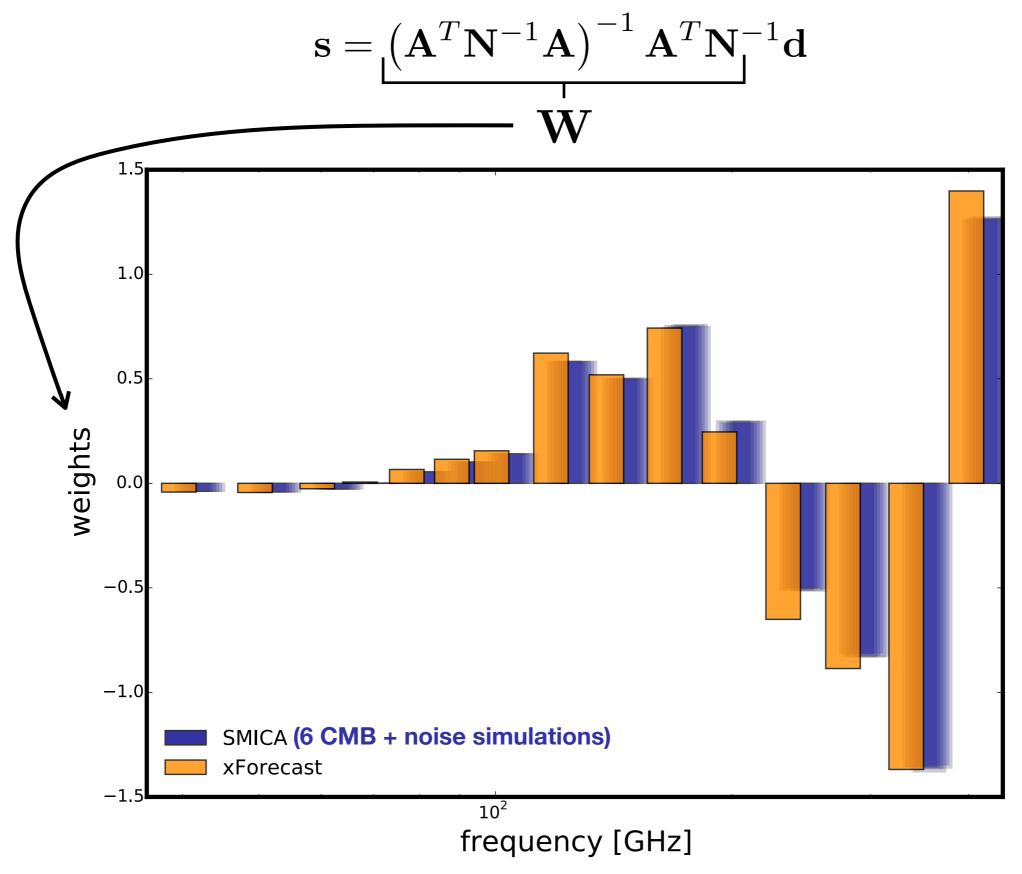


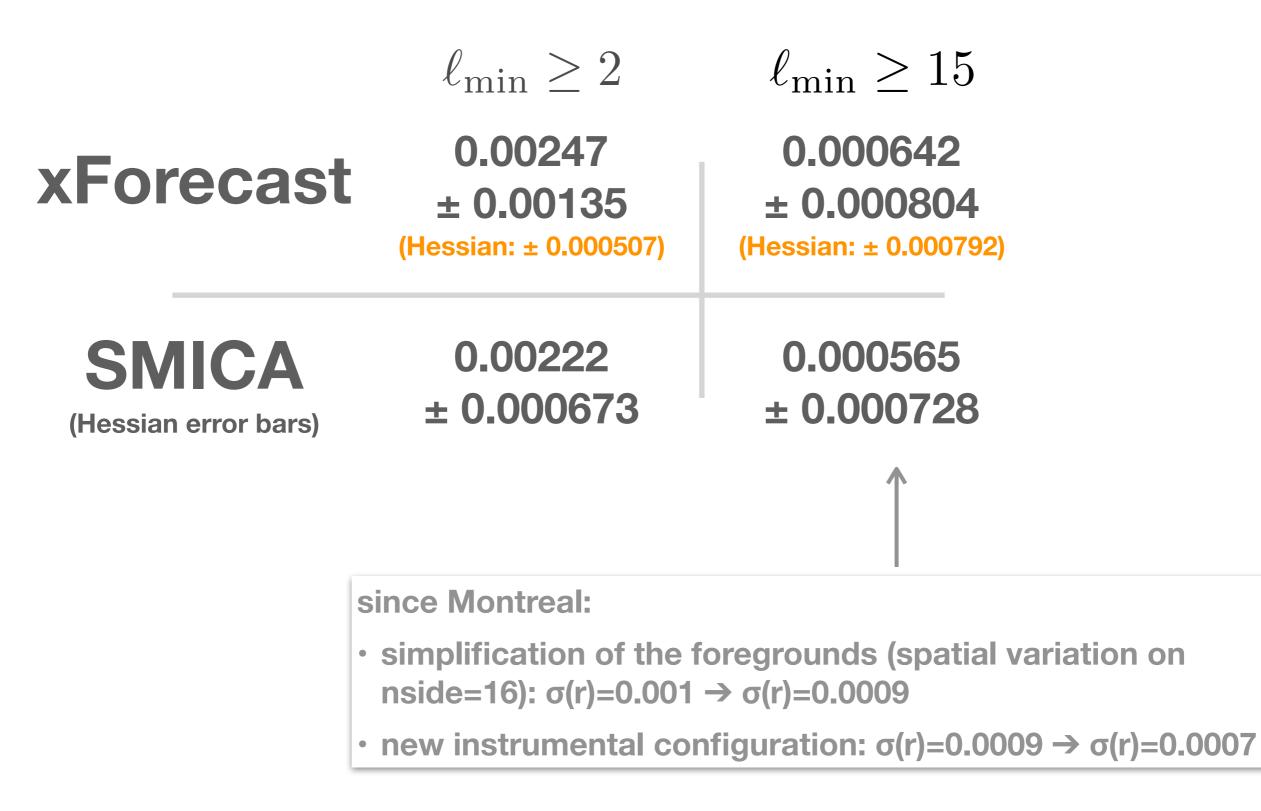


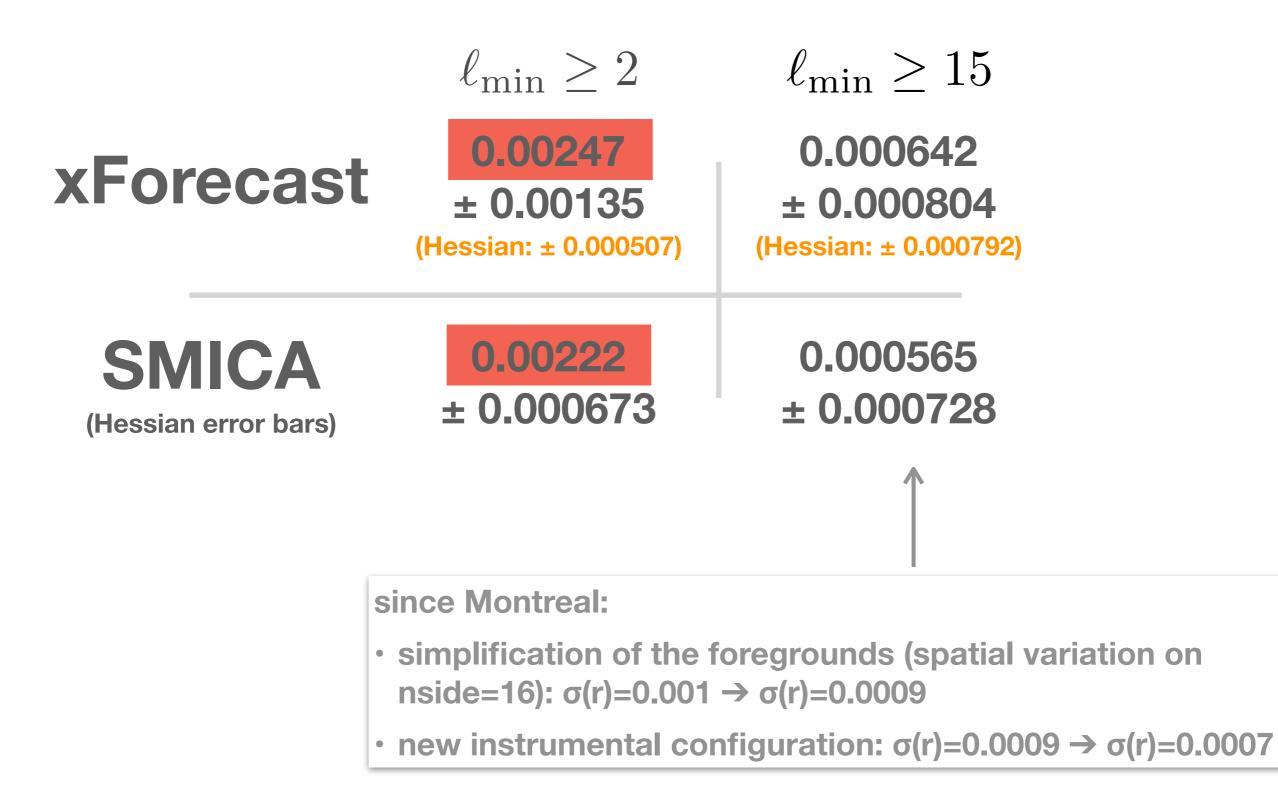
Method – SMICA



$$\mathbf{s} = \left[\begin{pmatrix} \mathbf{A}^T \mathbf{N}^{-1} \mathbf{A} \end{pmatrix}^{-1} \mathbf{A}^T \mathbf{N} \right]^{-1} \mathbf{d}$$

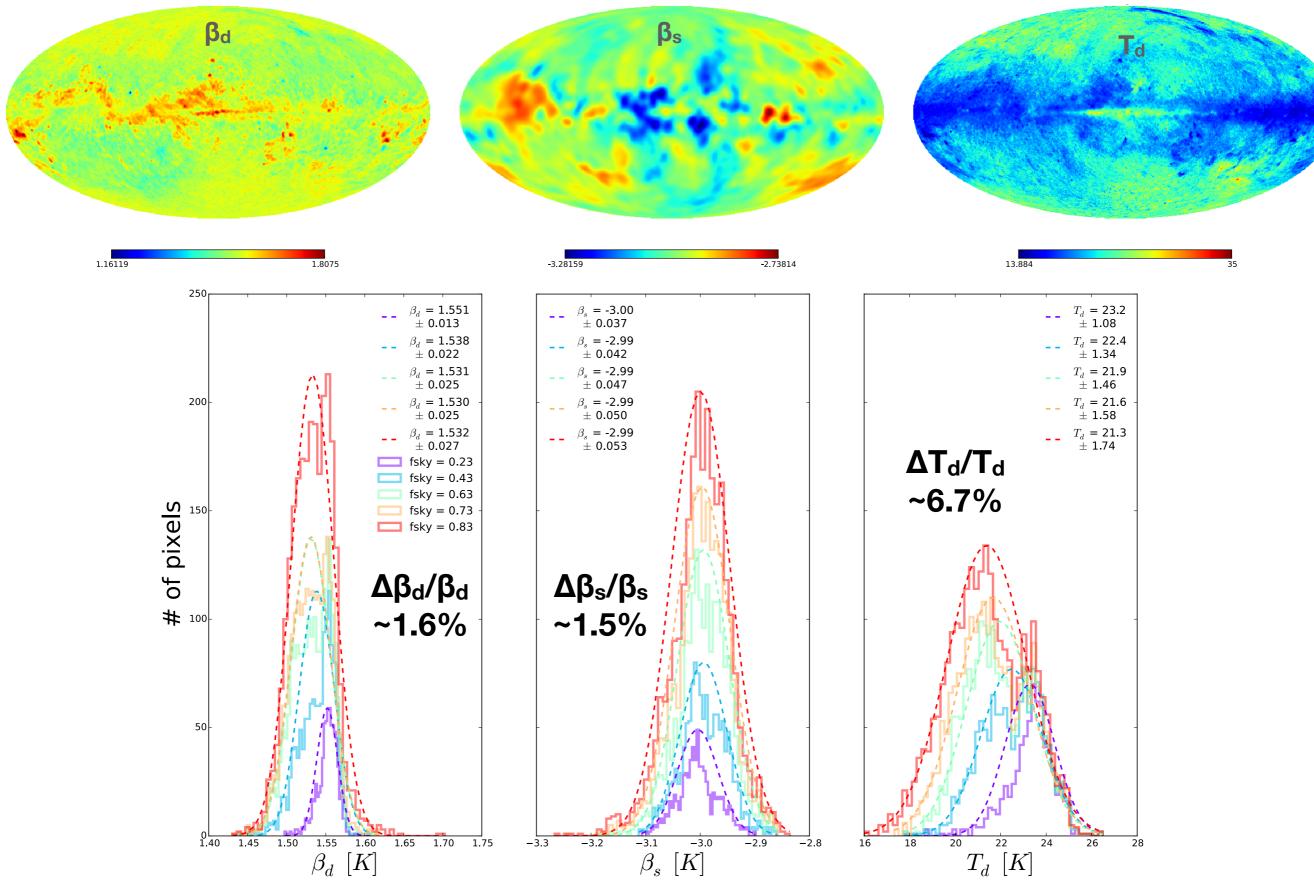






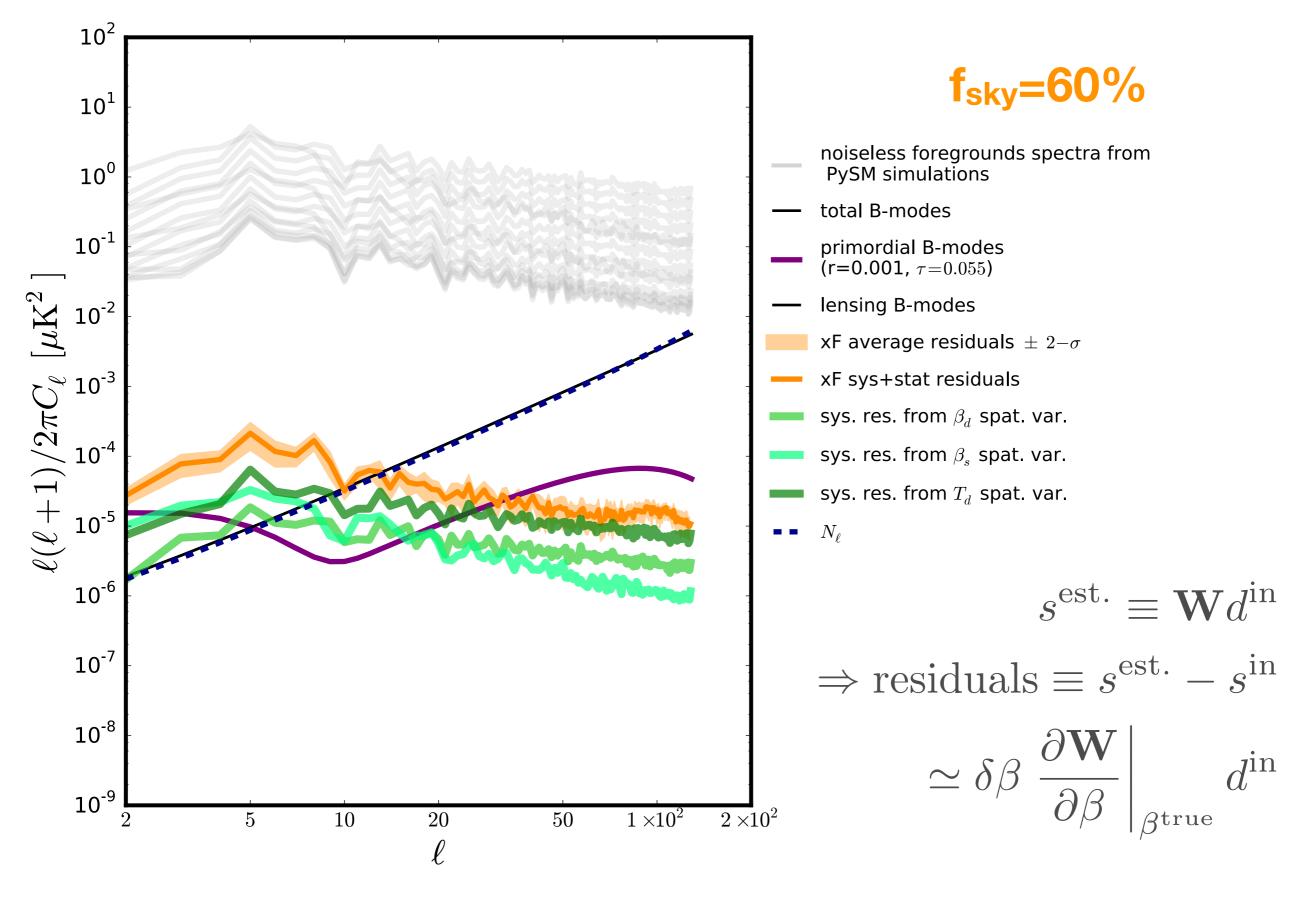
bias ~ O(0.002) on r on the largest angular scales: it is crucial to take into account the spatial variations of spectral indices in the analysis

spatial variations of the spectral indices in the PySM templates



J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

spatial variations of the spectral indices in the PySM templates



J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

we should look for a balance between statistical and systematic errors

STATISTICAL error bars on spectral parameters SYSTEMATIC error bars on spectral parameters we should look for a balance between statistical and systematic errors

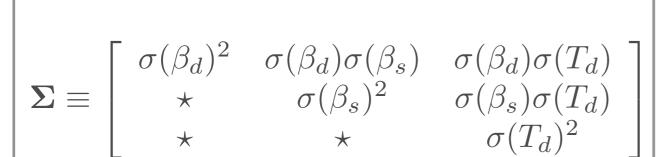
$$\boldsymbol{\Sigma} \equiv \begin{bmatrix} \sigma(\beta_d)^2 & \sigma(\beta_d)\sigma(\beta_s) & \sigma(\beta_d)\sigma(T_d) \\ \star & \sigma(\beta_s)^2 & \sigma(\beta_s)\sigma(T_d) \\ \star & \star & \sigma(T_d)^2 \end{bmatrix}$$

STATISTICAL error bars on spectral parameters

- better signal-to-noise (instrumental sensitivity, etc.)
- few degrees of freedom
- broad frequency range
- large sky area (more pixels!)

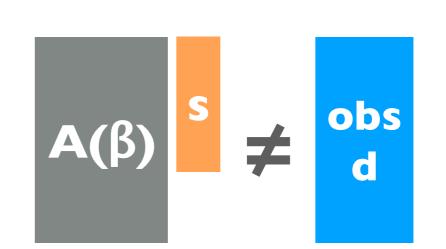
SYSTEMATIC error bars on spectral parameters

we should look for a balance between statistical and systematic errors



STATISTICAL error bars on spectral parameters

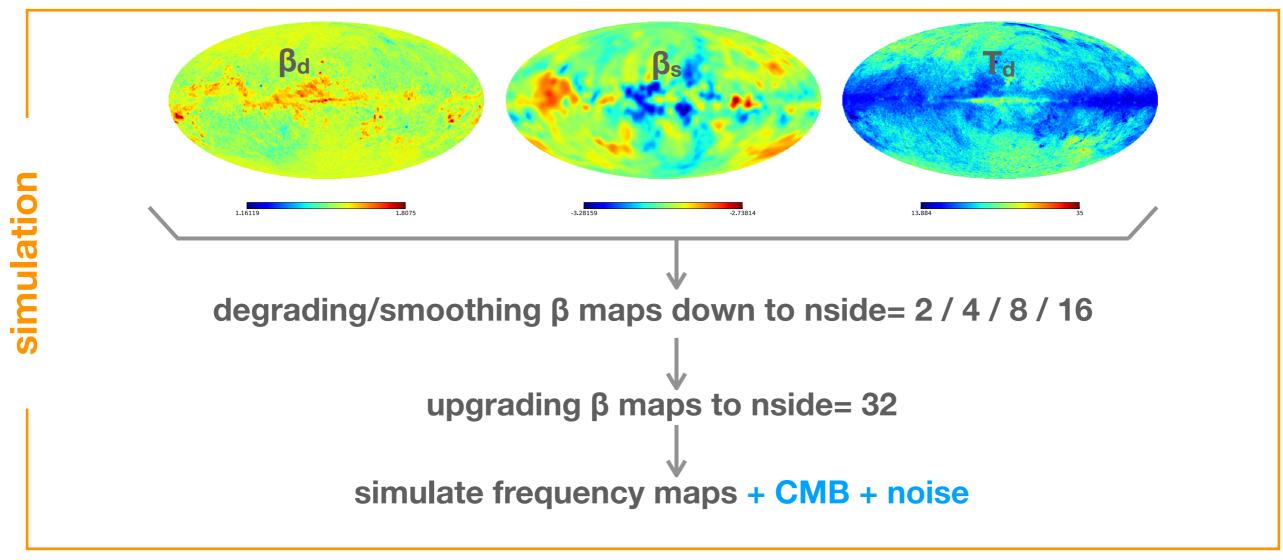
- better signal-to-noise (instrumental sensitivity, etc.)
- few degrees of freedom
- broad frequency range
- large sky area (more pixels!)



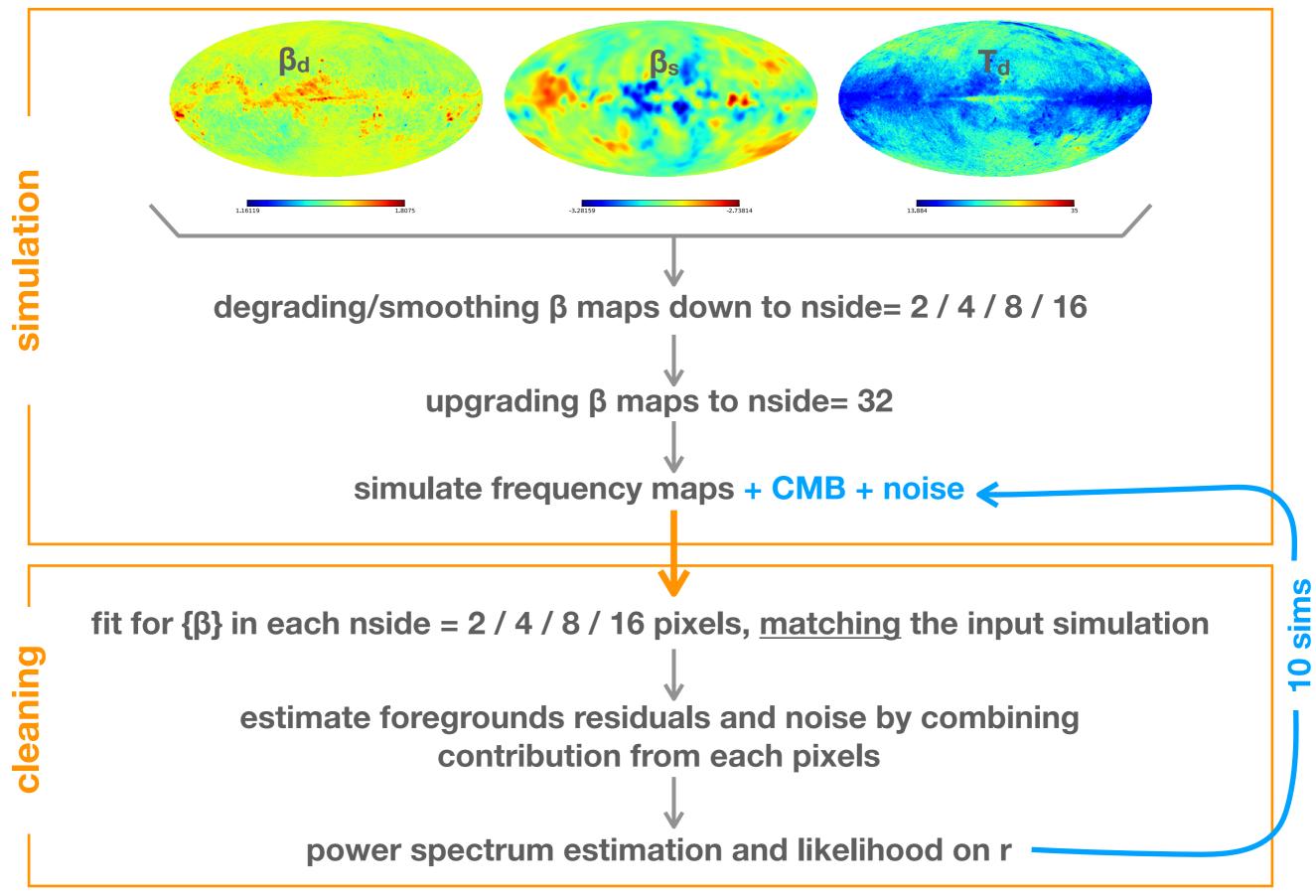
SYSTEMATIC error bars on spectral parameters

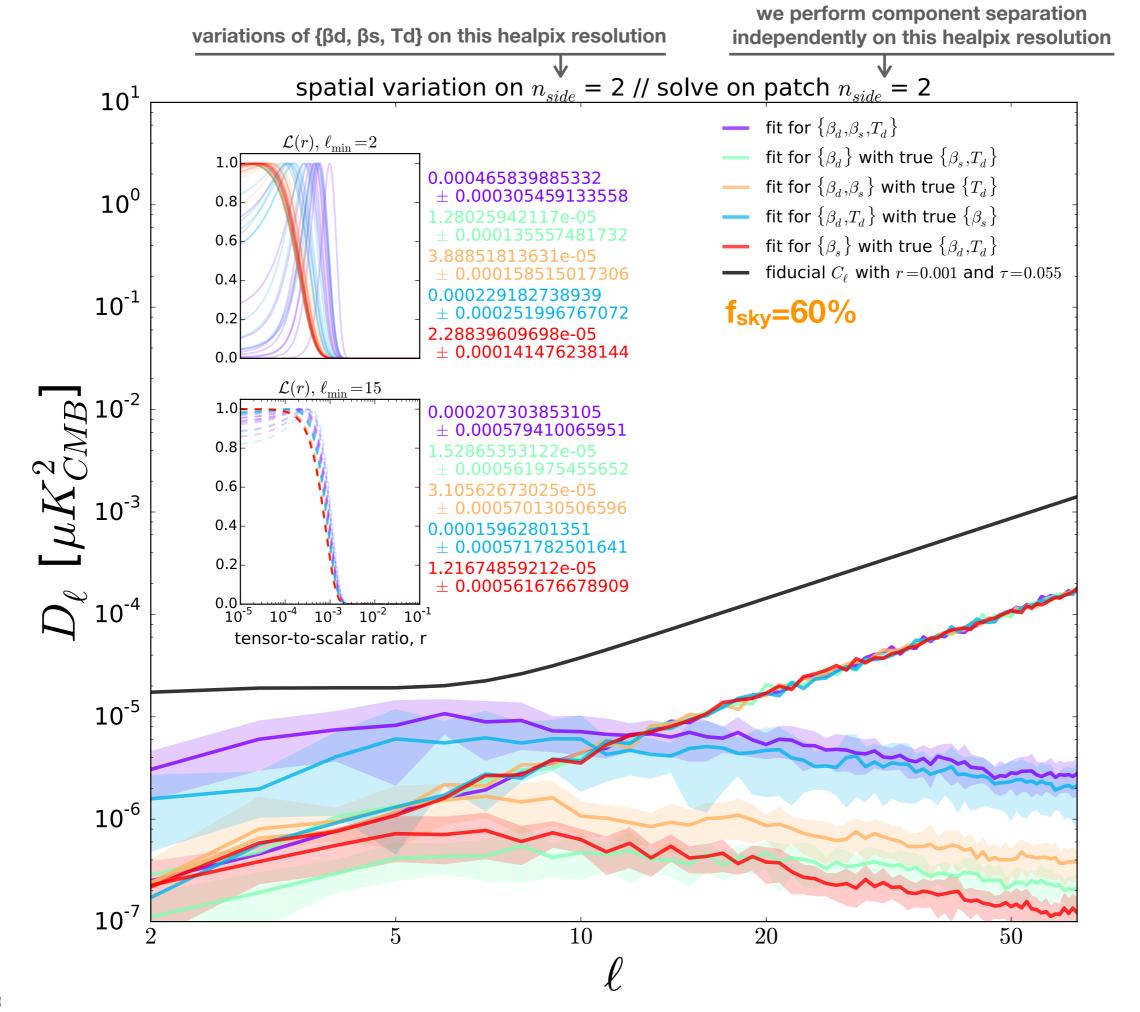
- more internal degrees of freedom (free spectral parameters, sky templates, etc.)
- reduced frequency range
- small sky area (less complexity!)

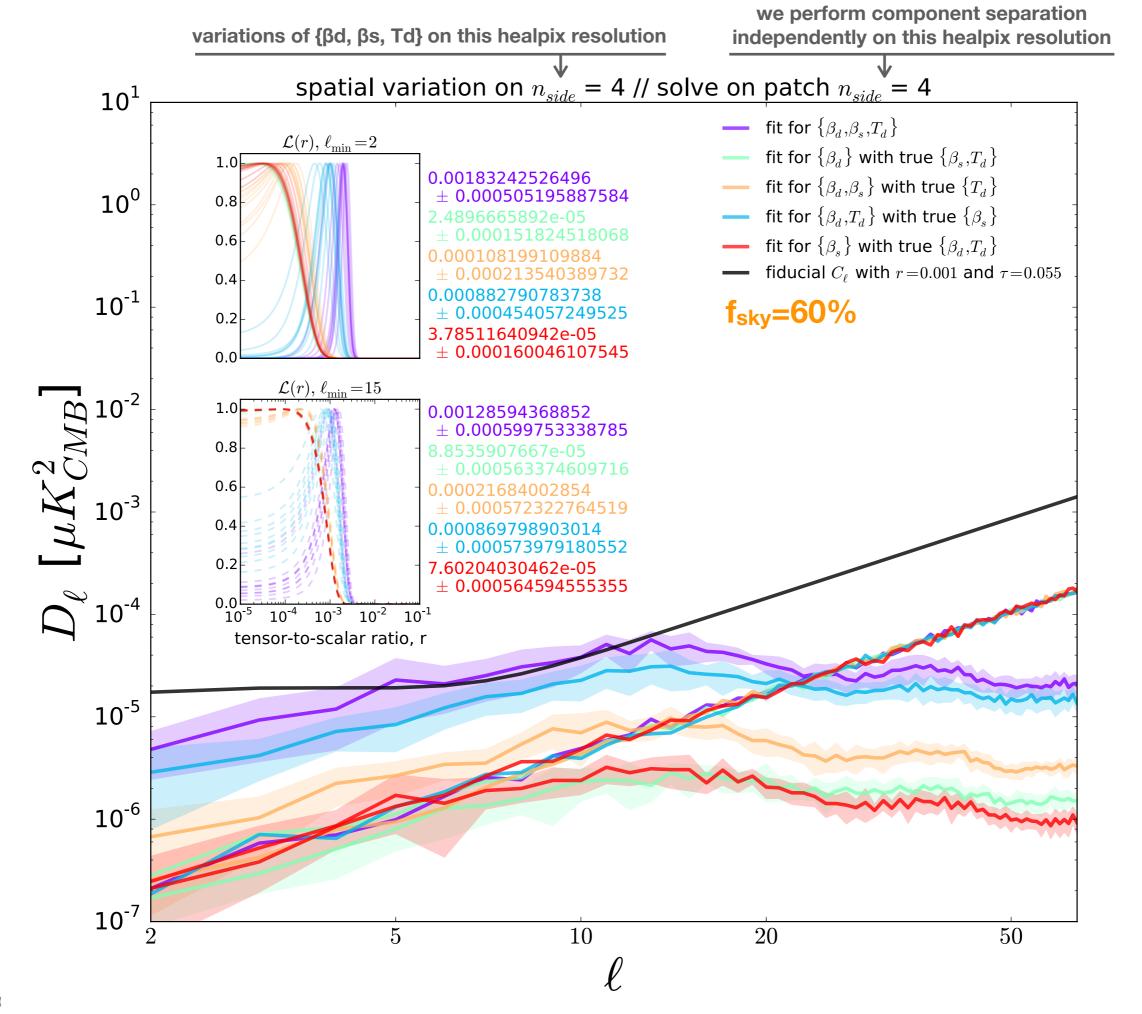
Method – multipatch

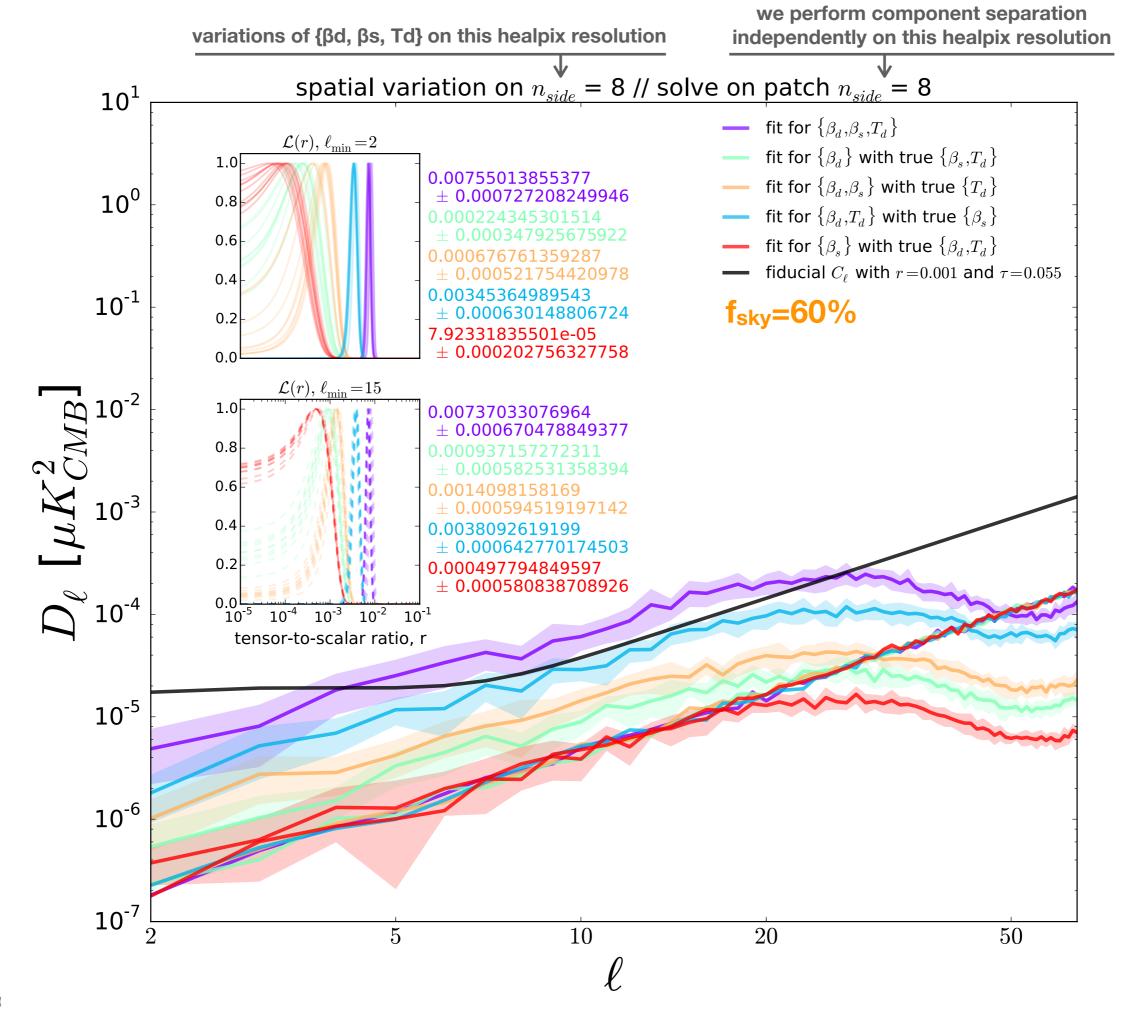


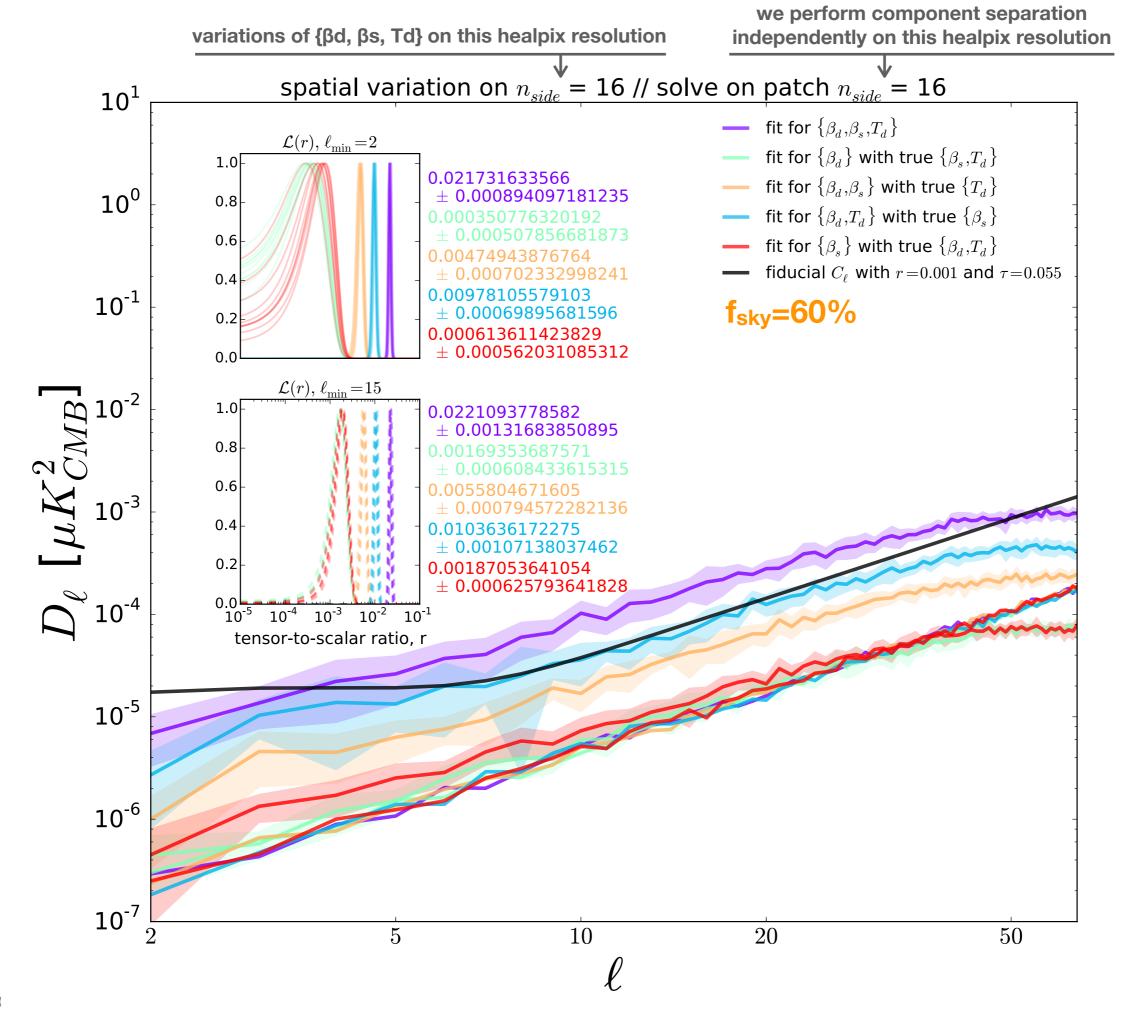
Method – multipatch









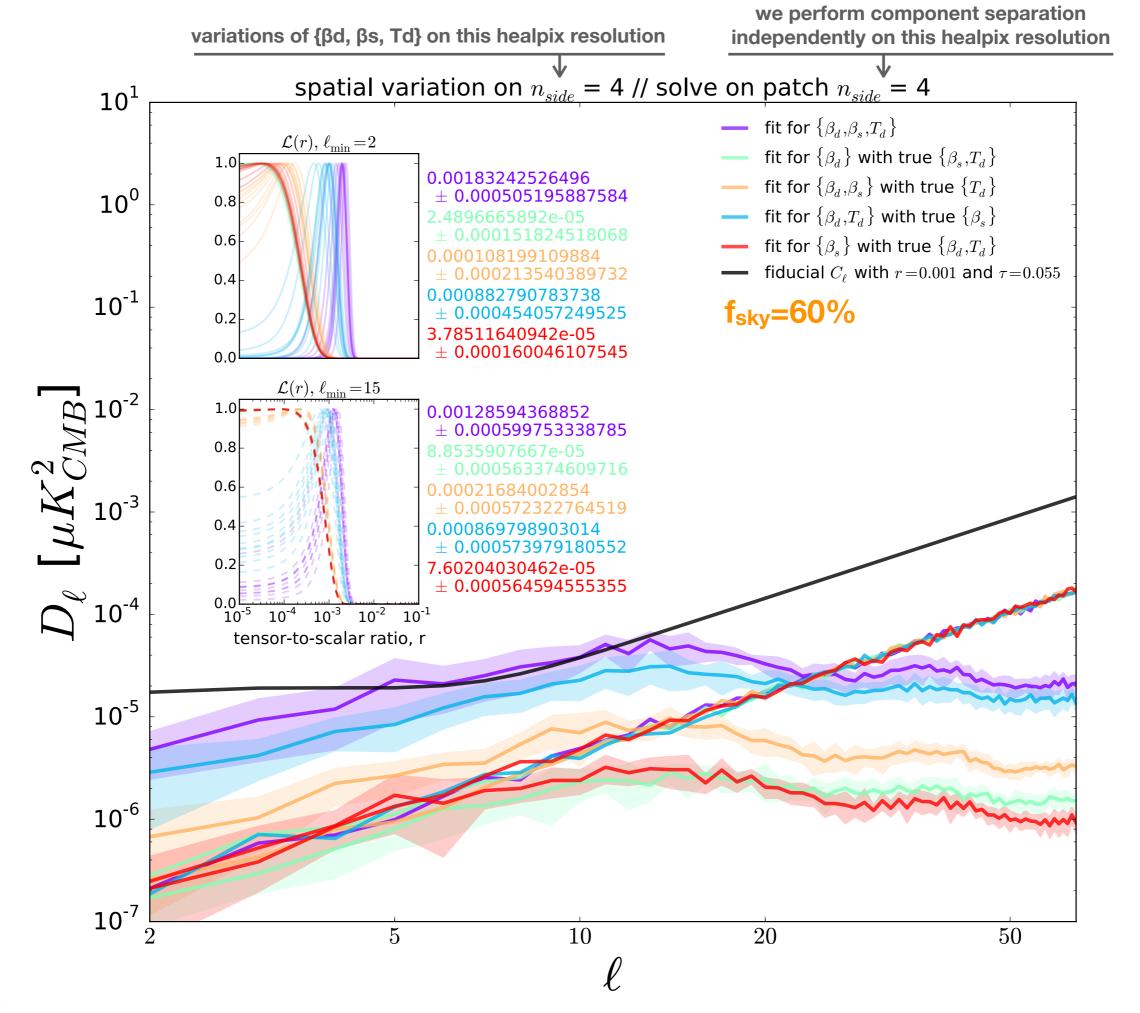


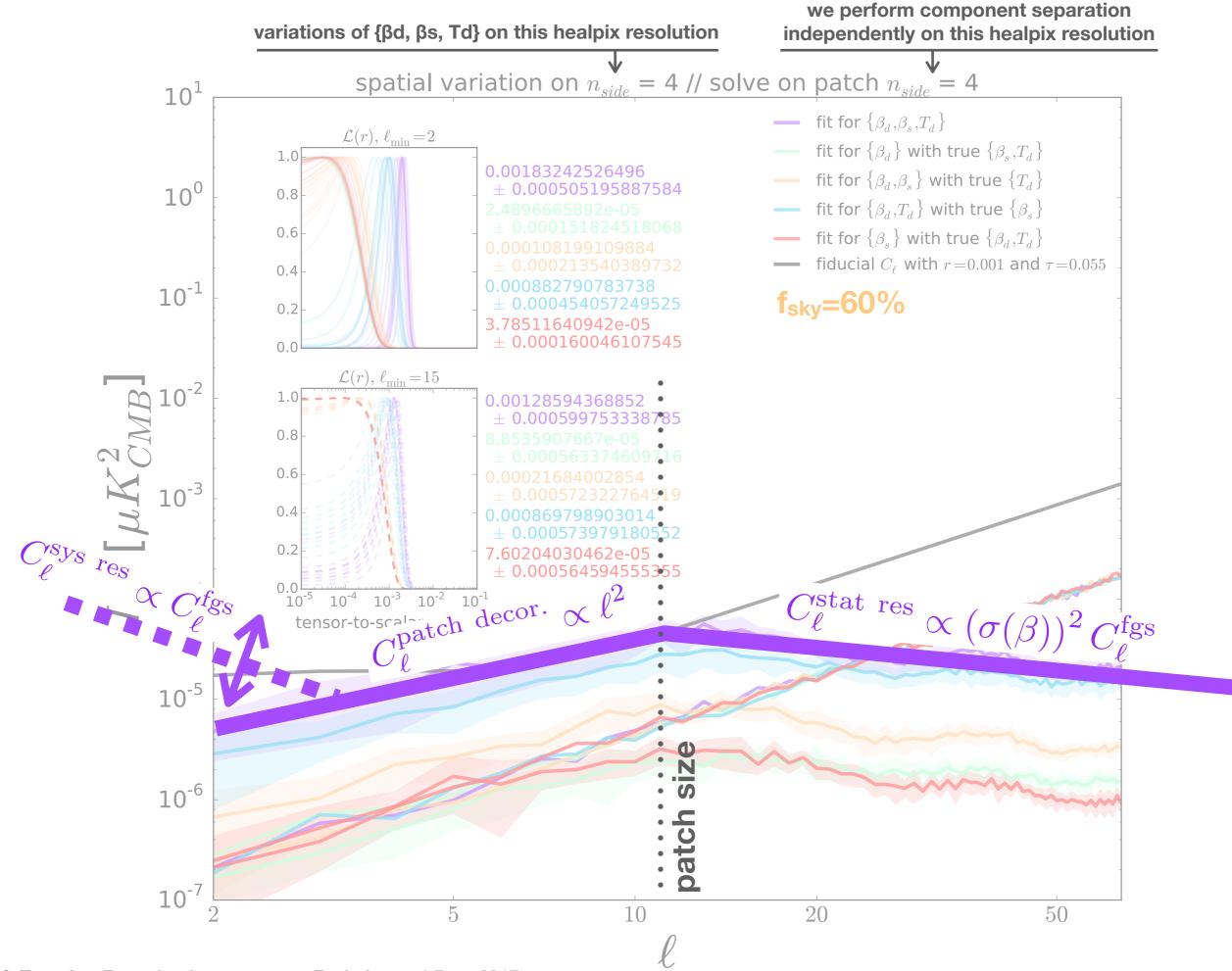
Results – multipatch on nside $2 \rightarrow 16$

= r_{bias} < σ(r) < 0.001

$\ell_{\min} \geq 2$		fit for {Bd} true {Bs,Td}	fit for {Bd,Bs} true {Td}	fit for {Bd,Bs,Td}	fit for {Bd,Td} true {Bs}	fit for {Bs} true {Bd,Td}
	nside = 2 (sim and cleaning)	1.28e-05 ± 0.000136	3.89e-05 ± 0.000159	0.000466 ± 0.000305	0.000229 ± 0.000252	2.29e-05 ± 0.000141
	nside = 4 (sim and cleaning)	2.49e-05 ± 0.000152	0.000108 ± 0.000214	0.00183 ± 0.000505	0.000883 ± 0.000454	3.79e-05 ± 0.000160
	nside = 8 (sim and cleaning)	0.000224 ± 0.000348	0.000677 ± 0.000522	0.00755 ± 0.000727	0.00345 ± 0.000630	7.92e-05 ± 0.000203
	nside = 16 (sim and cleaning)	0.000351 ± 0.000508	0.00475 ± 0.000702	0.0217 ± 0.000894	0.00978 ± 0.000699	0.000614 ± 0.000562

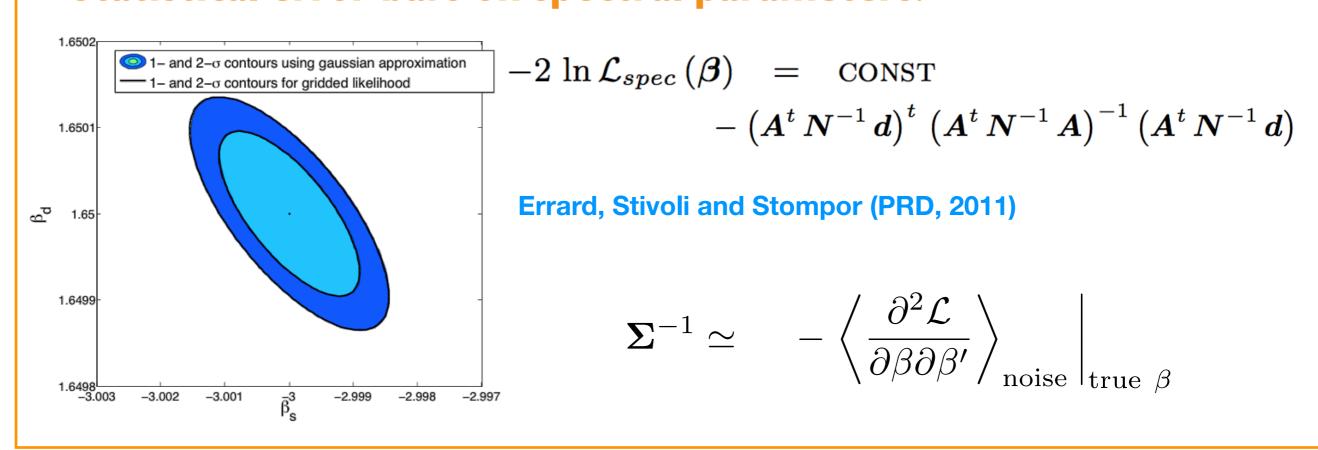
is it possible to reduce the bias on r by modeling the foregrounds residuals and marginalizing over them?





J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

Yet, we can semi-analytically estimate what are the statistical foregrounds residuals Statistical error bars on spectral parameters:



Yet, we can semi-analytically estimate what are the statistical foregrounds residuals **Statistical error bars on spectral parameters:** $1 = and 2 = \sigma$ contours using gaussian approximation $1 = and 2 = \sigma$ contours tor gridded likelihood $1 = and 2 = \sigma$ contours tor gridded lik

Synchrotron and dust templates

→ estimated using the most extreme frequency channels of LiteBIRD (scaling them to 150GHz using the estimated spectral indices in each pixels)

 $\Sigma^{-1} \simeq -\left\langle \frac{\partial^2 \mathcal{L}}{\partial \beta \partial \beta'} \right\rangle_{\text{noise line}}$

1.6499

1.6498 -3.003

-3.002

-3.001

 $\bar{\beta}_{s}^{3}$

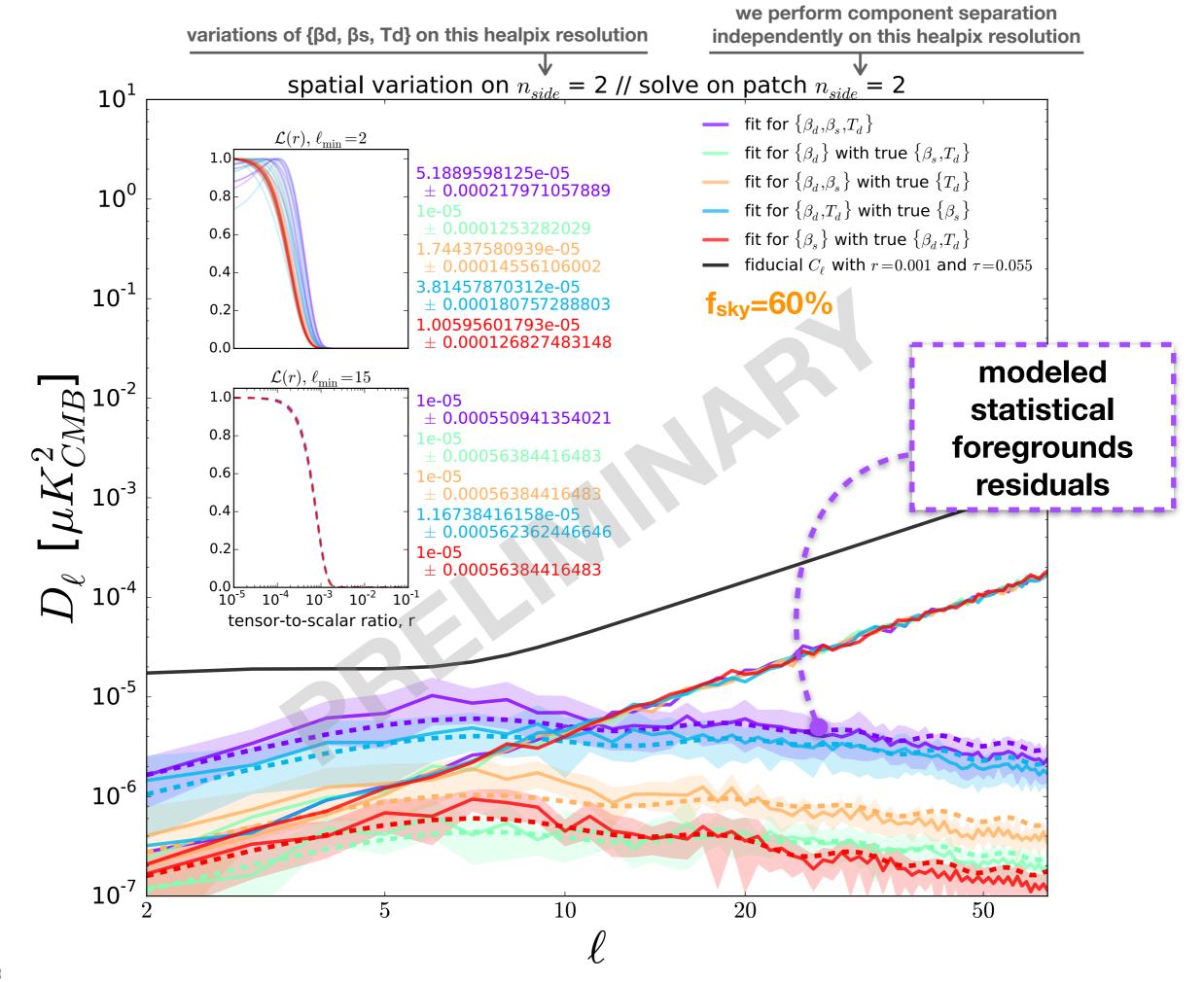
-2.999

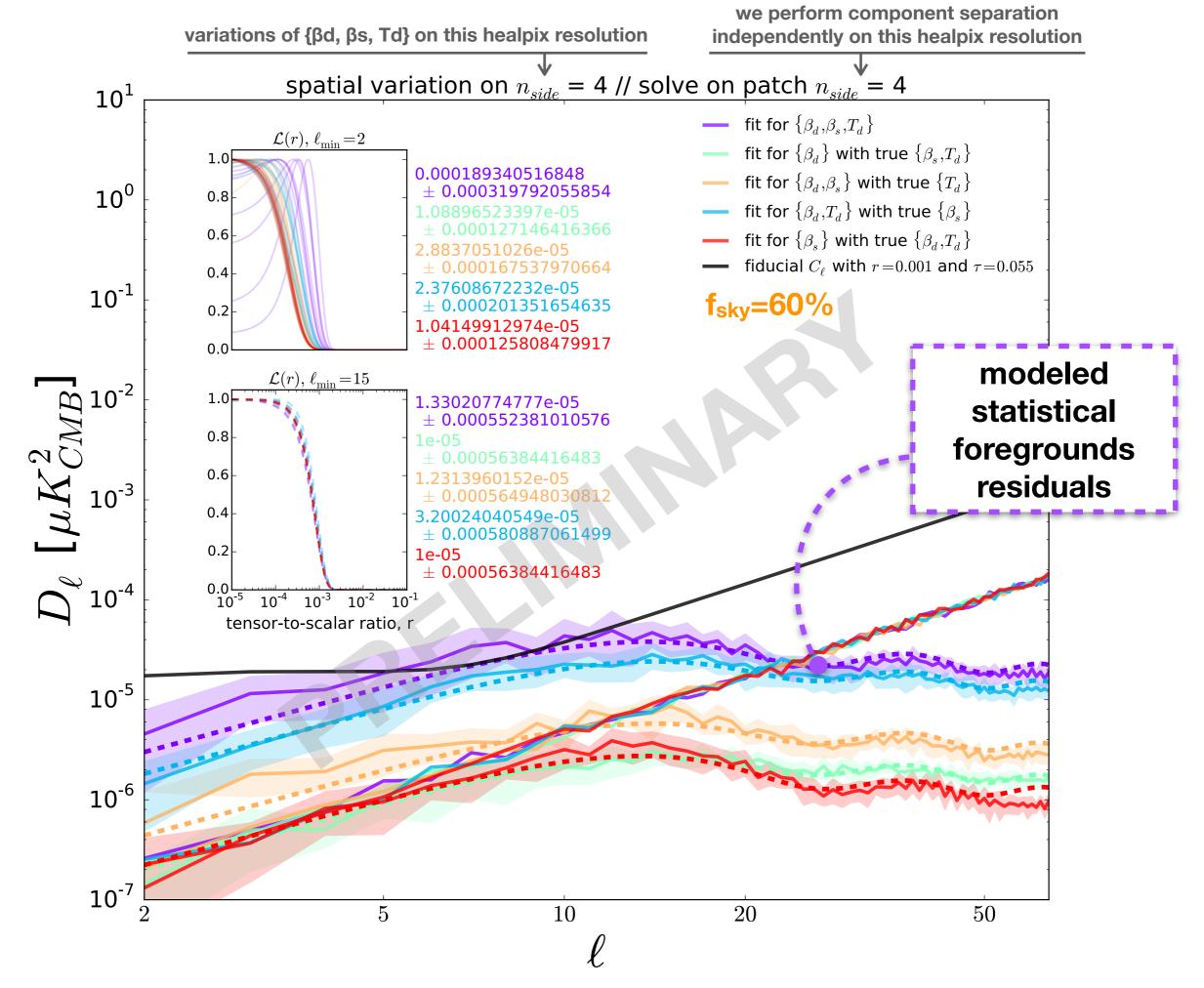
-2.998

-2.997

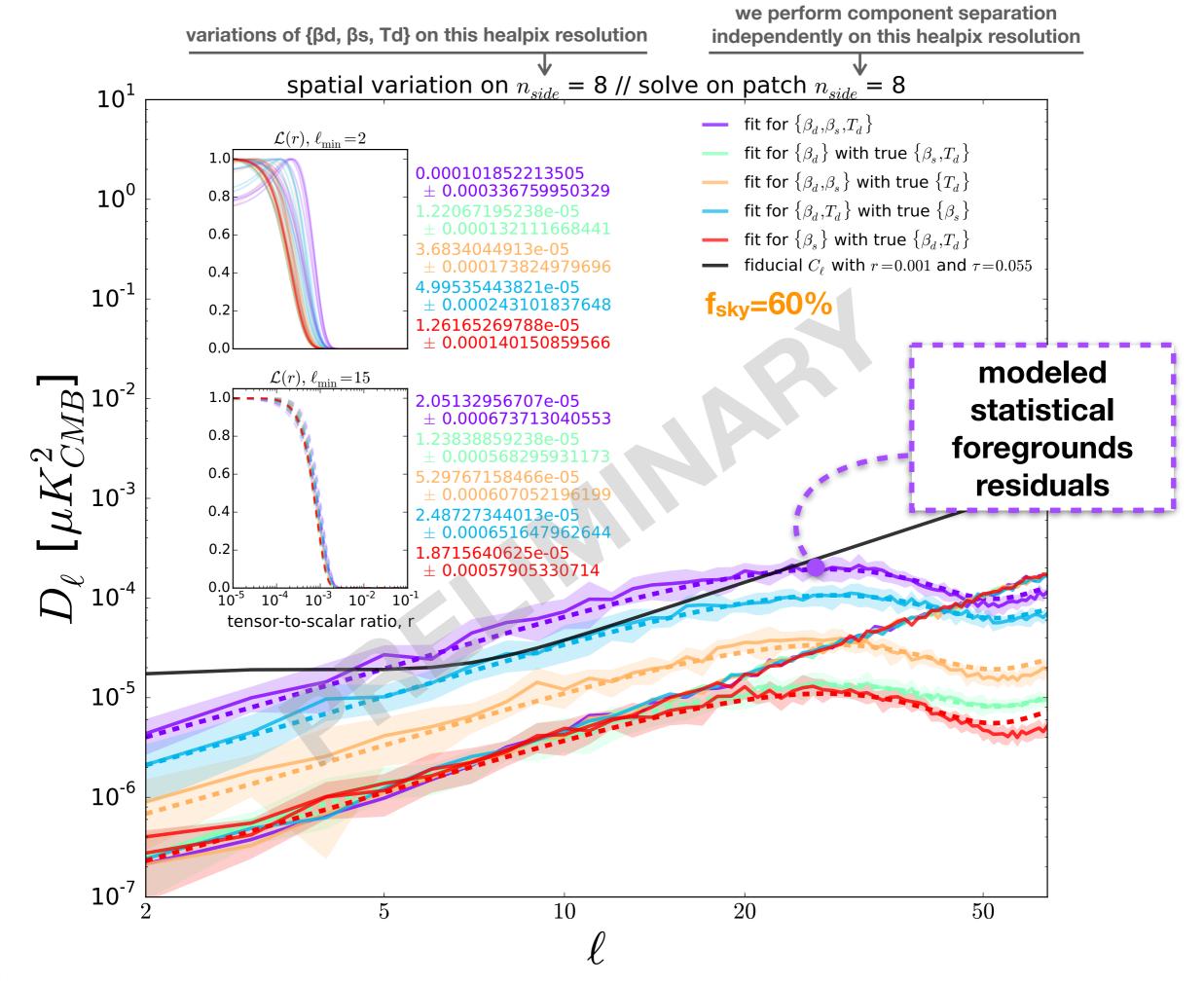
Yet, we can semi-analytically estimate what are the statistical foregrounds residuals **Statistical error bars on spectral parameters:** 1.6502 \bigcirc 1– and 2– σ contours using gaussian approximation $-2 \ln \mathcal{L}_{spec}(\boldsymbol{\beta}) = \text{CONST}$ 1- and 2-o contours for gridded likelihood $-\left(oldsymbol{A}^t\,oldsymbol{N}^{-1}\,oldsymbol{d} ight)^t\,\left(oldsymbol{A}^t\,oldsymbol{N}^{-1}\,oldsymbol{A} ight)^{-1}\left(oldsymbol{A}^t\,oldsymbol{N}^{-1}\,oldsymbol{d} ight)$ 1.6501 Errard, Stivoli and Stompor (PRD, 2011) പ 1.65 1.6499 $\Sigma^{-1} \simeq -\left\langle \frac{\partial^2 \mathcal{L}}{\partial \beta \partial \beta'} \right\rangle_{\text{noise}} \bigg|_{\text{true}}$ 1.6498^L -3.003 $\bar{\beta}_{s}^{3}$ -3.002 -3.001 -2.999 -2.997 -2.9 Amplitude of statistical foregrounds residuals: $C_{\ell}^{\rm fg\ res} \equiv \sum \sum \Sigma_{kk'} \kappa_{kk'}^{jj'} C_{\ell}^{jj'}$ Stivoli, Grain, Leach, Tristram, Baccigalupi, Stompor (MNRAS, 2010) k.k' i.i Synchrotron and dust templates

→ estimated using the most extreme frequency channels of LiteBIRD (scaling them to 150GHz using the estimated spectral indices in each pixels)

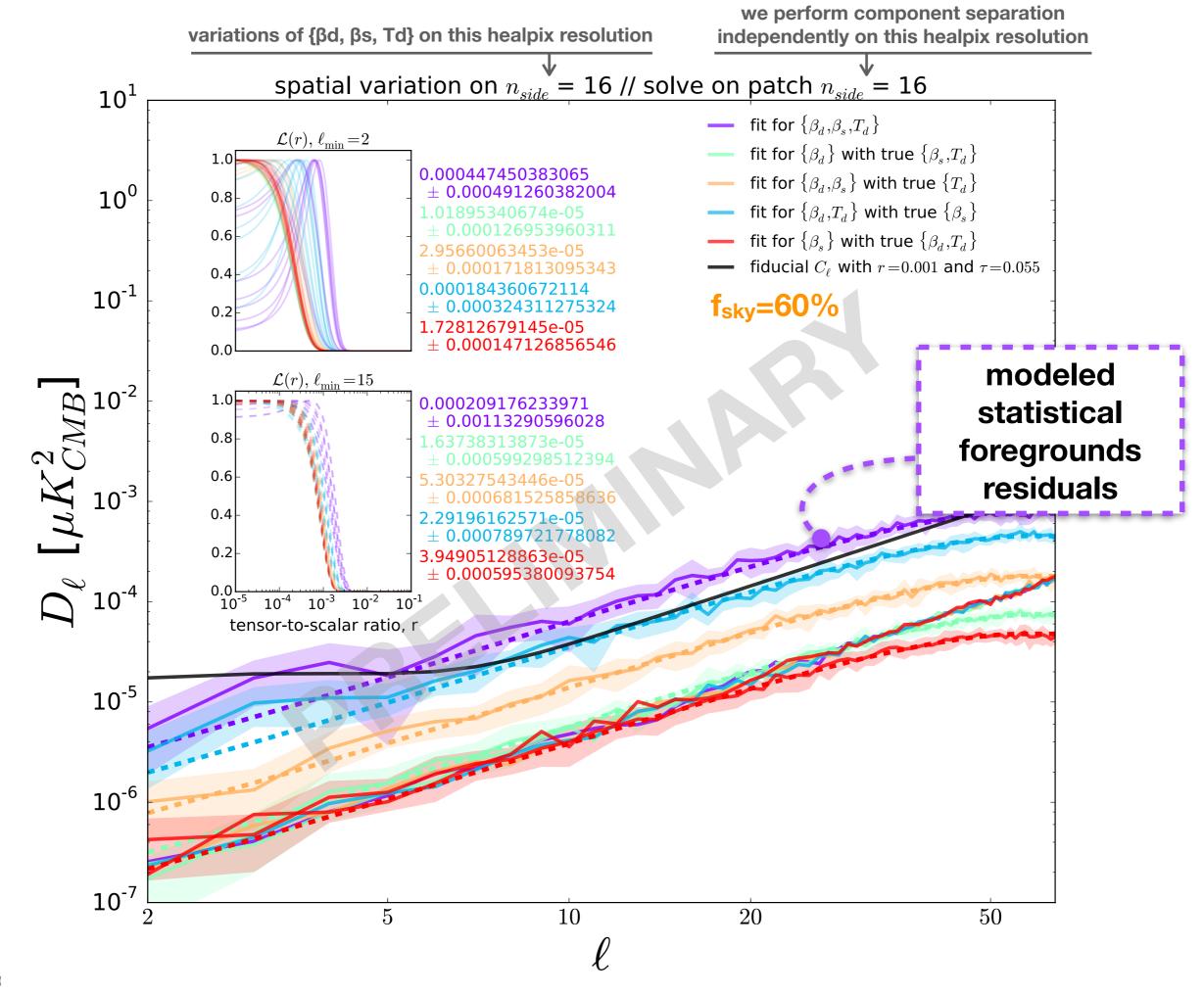




J. Errar



J. Errar

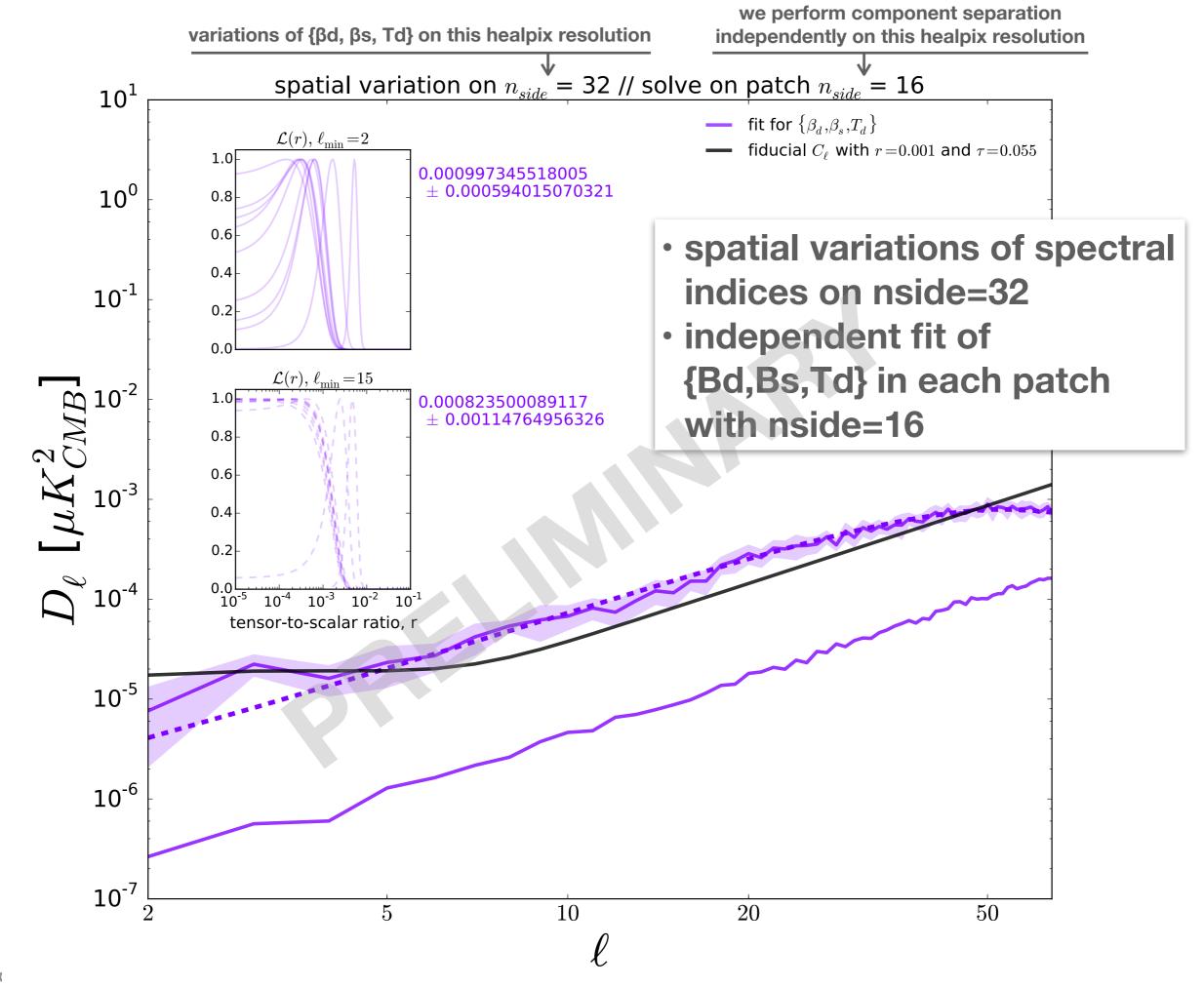


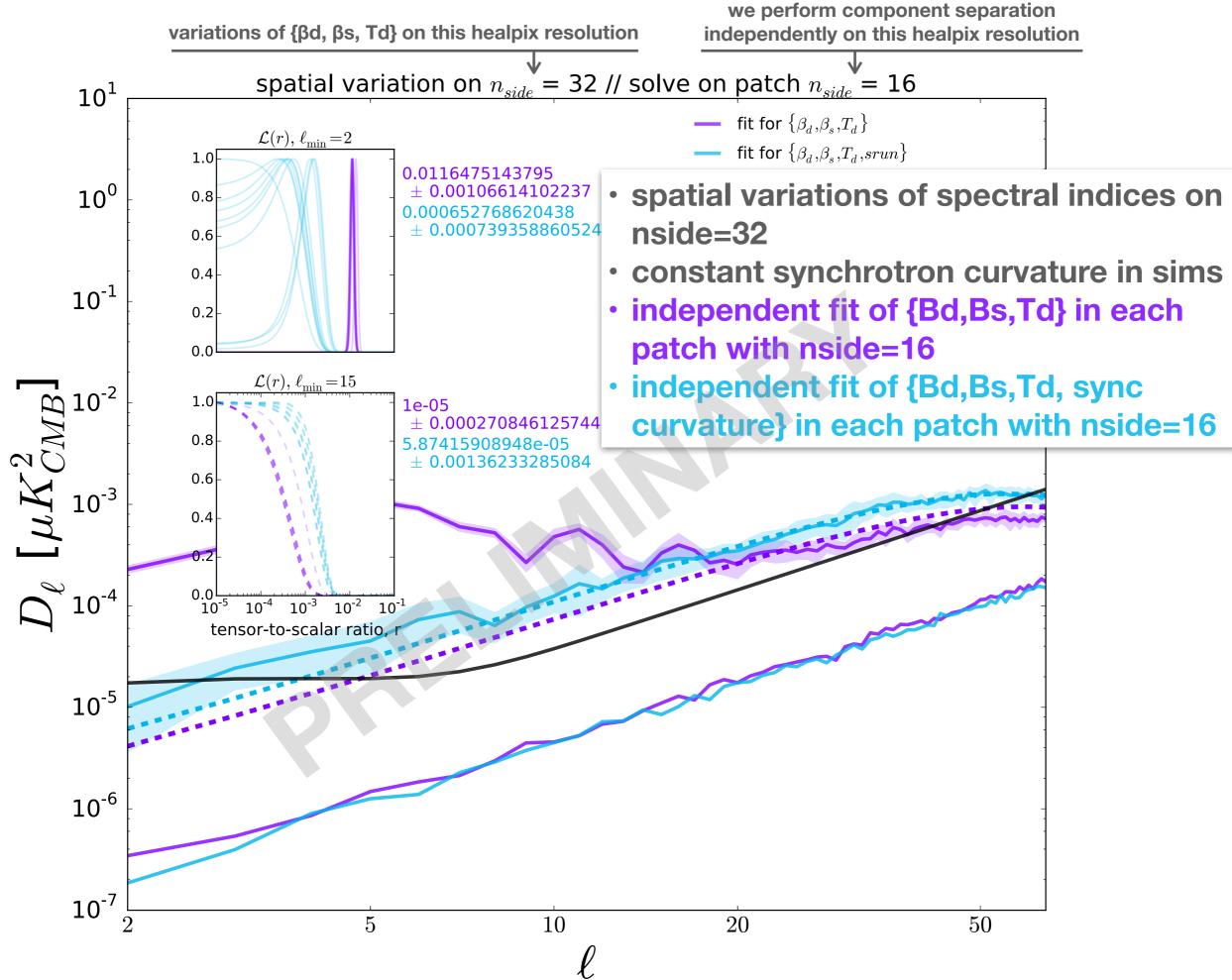
Results – multipatch when deprojecting statistical foregrounds residuals

= r_{bias} < σ(r) < 0.001

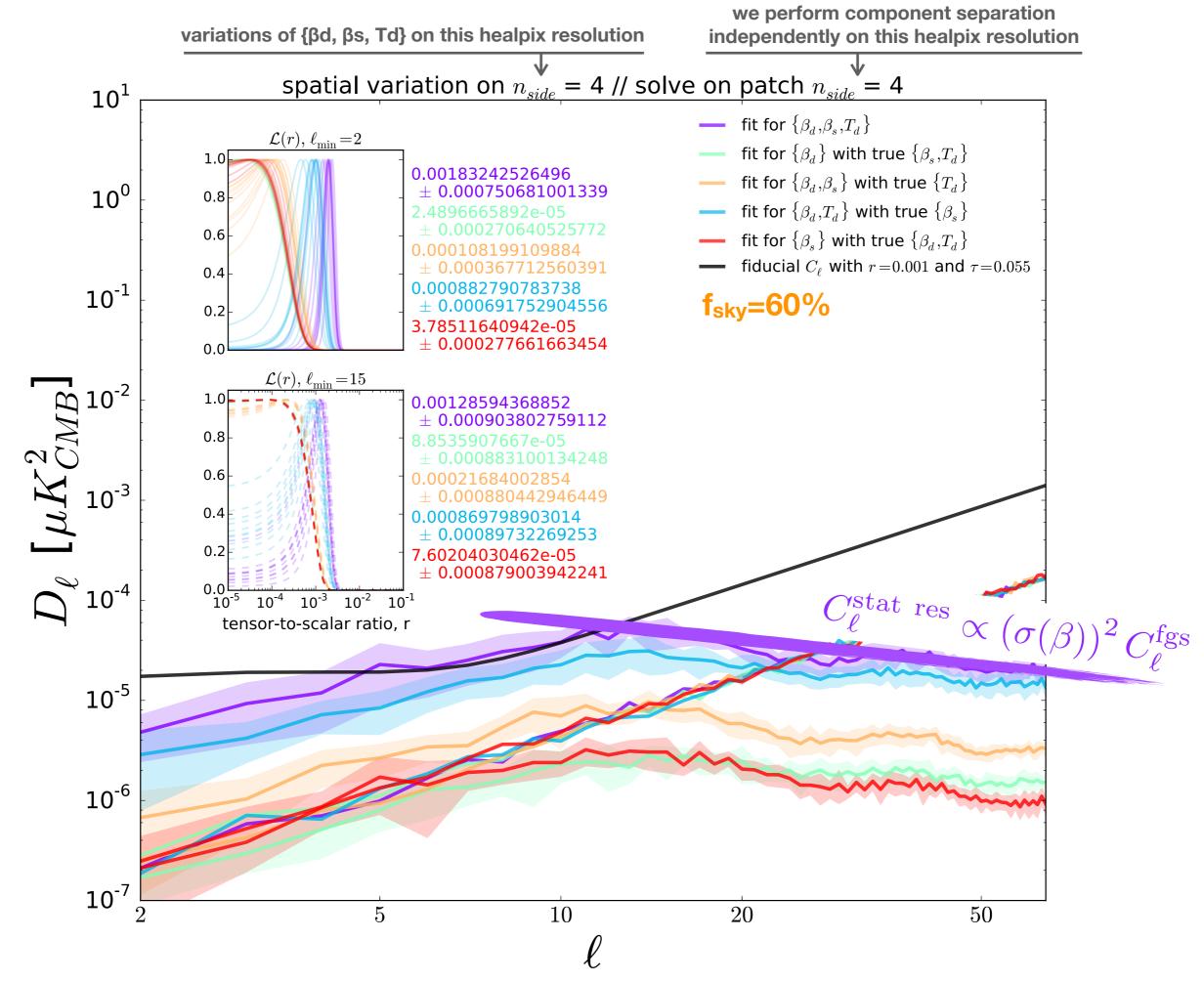
PRX	$\ell_{\min} \geq 2$	previously ມ	after adding statistical foregrounds residuals model in the likelihood \mathscr{L} (r)
		fit for {Bd,Bs,Td}	fit for {Bd,Bs,Td}
	nside = 2 (sim and cleaning)	0.000466 ± 0.000305	0.0000519 ± 0.000218
	nside = 4 (sim and cleaning)	0.00183 ± 0.000505	0.000189 ± 0.000320
	nside = 8 (sim and cleaning)	0.00755 ± 0.000727	0.000102 ± 0.000337
	nside = 16 (sim and cleaning)	0.0217 ± 0.000894	0.000447 ± 0.000491

what about more complex skies?





is it possible to optimize the focal plane to reduce the foregrounds residuals?



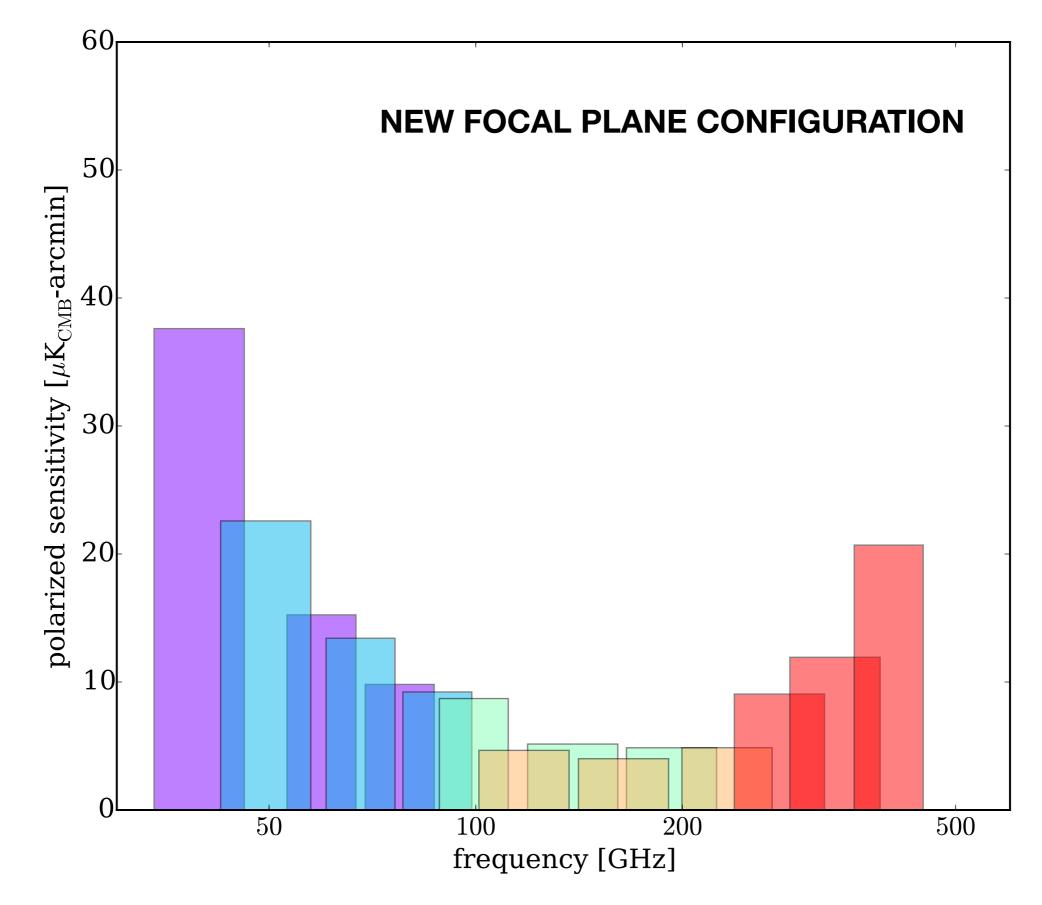
Method — optimization of focal plane

- minimization of $\|\Sigma(\beta)\|$ in each patch of the sky, for each simulations
- variable is the number of pixels i.e. {LF-1, LF-2, MF-1, MF-2, HF-1, HF-2, HF-3}
- we keep the area of the focal plane constant

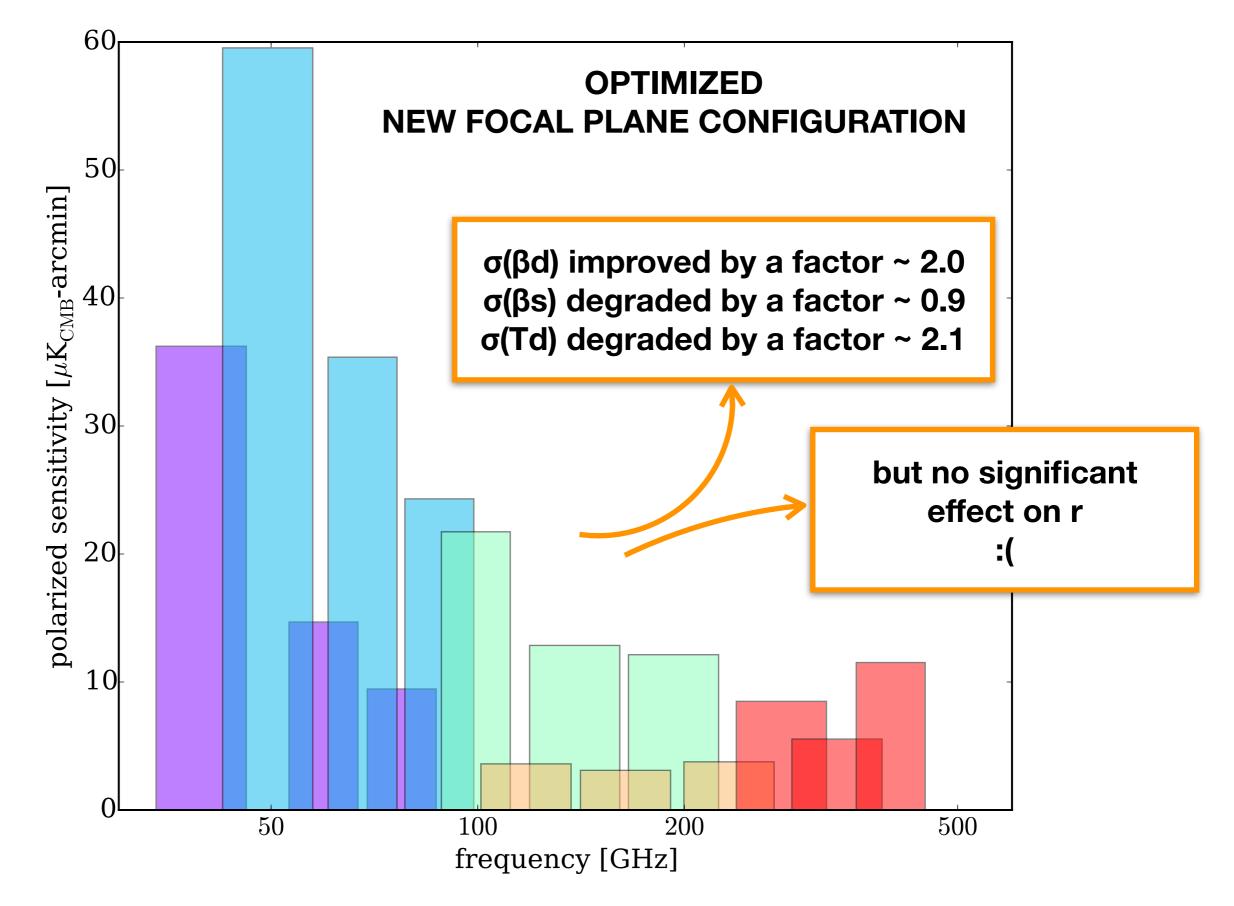
 $|\Sigma(\beta)||$ is the norm (I took it as the deteminant) of the error covariance on spectral indices.

$$\boldsymbol{\Sigma} \equiv \begin{bmatrix} \sigma(\beta_d)^2 & \sigma(\beta_d)\sigma(\beta_s) & \sigma(\beta_d)\sigma(T_d) \\ \star & \sigma(\beta_s)^2 & \sigma(\beta_s)\sigma(T_d) \\ \star & \star & \sigma(T_d)^2 \end{bmatrix}$$

We approximate Σ using the analytical form of the spectral likelihood curvature (Errard+ 2012) — this is why the optimization is numerically easy.



J. Errard – B-modes from space – Berkeley – 4 Dec, 2017



Conclusion - discussion

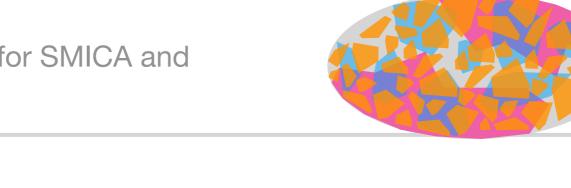
- current LiteBIRD focal plane design can reach bias on r < σ(r) < 0.001 considering input sky simulations with spatial variations of spectral indices over nside=16 scales:
 - SMICA and xForecast agree on a r ~ 0.0006 \pm 0.0007 when considering scales $l \ge 15$
 - Multipatch approach, combined with a deprojection of the statistical residuals, leads to r ~ 0.0004 \pm 0.0005 ($\ell \ge 2$)
- complicating the sky (spatial variations on nside=32 with synchrotron curvature) leads to r = 0.0007 ± 0.0007 (l≥2). NB: synchrotron curvature leads to a strong bias if not fitted for in the modeling.

Conclusion - discussion

- current LiteBIRD focal plane design can reach bias on r < σ(r) < 0.001 considering input sky simulations with spatial variations of spectral indices over nside=16 scales:
 - SMICA and xForecast agree on a r ~ 0.0006 \pm 0.0007 when considering scales $l \ge 15$
 - Multipatch approach, combined with a deprojection of the statistical residuals, leads to r ~ 0.0004 \pm 0.0005 ($\ell \ge 2$)
- complicating the sky (spatial variations on nside=32 with synchrotron curvature) leads to r = 0.0007 ± 0.0007 (l≥2). NB: synchrotron curvature leads to a strong bias if not fitted for in the modeling.

Next steps:

- unique and integrated framework including the estimation of $\{\beta\}$ and the marginalization of $\mathscr{L}(r)$ over statistical foregrounds residuals
- iterative patch finder find optimal regions for each spectral index which would both optimize the statistical errors while minimizing the systematic bias. They would likely follow the morphology of the galactic foregrounds.
- build a consistent and common framework for SMICA and parametric pixel-based methods



Bd

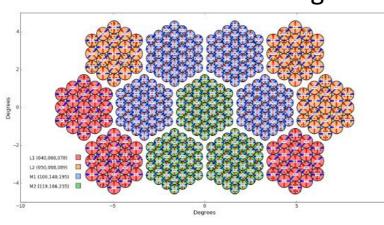
Td

Bs

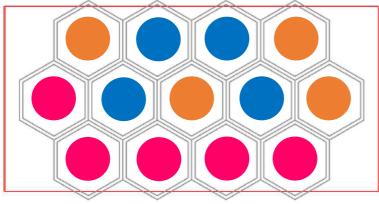
BACKUP

LiteBIRD assumed specifications

Proposal for Focal Plane Design



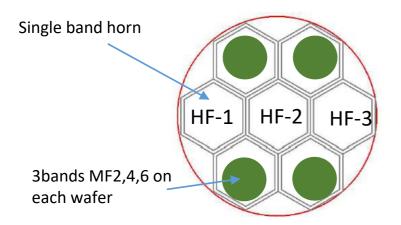
LFT - LF enhanced design



Band	Center Freq	Frac BW	Pixel Diameter	Num Pix	Num Det
	[GHz]		[mm]		
LF-1	40	0.30	18	57	114
LF-2	50	0.30	18	57	114
LF-3	60	0.23	18	57	114
LF-4	68	0.23	18	57	114
LF-5	78	0.23	18	57	114
LF-6	89	0.23	18	57	114
MF-1	100	0.23	12	148	296
MF-2	119	0.30	12	111	222
MF-3	140	0.30	12	148	296
MF-4	166	0.30	12	111	222
MF-5	195	0.30	12	148	296
MF-6	235	0.30	12	111	222

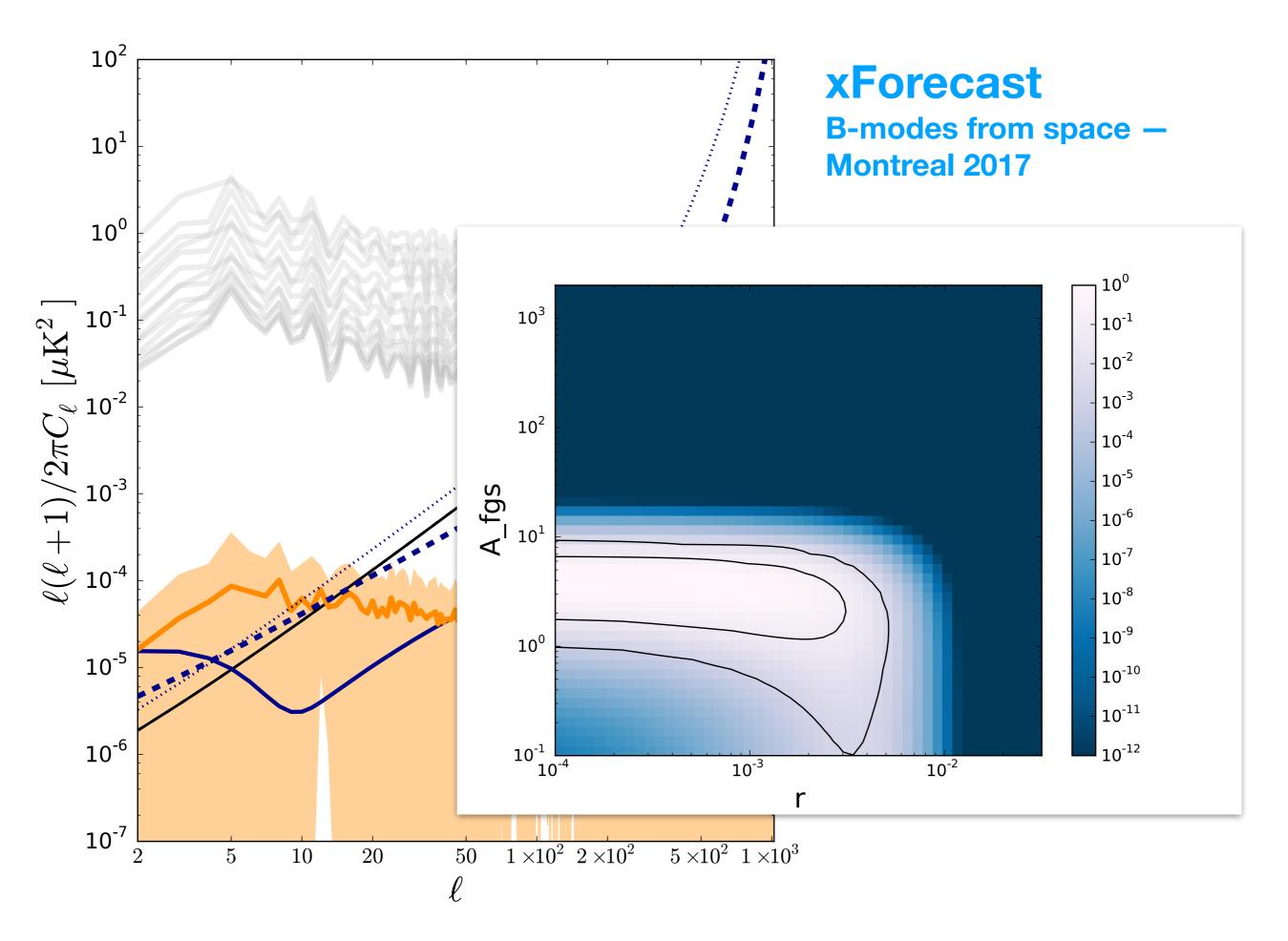
Band	Center Freq [GHz]	Frac BW	Pixel Diameter [mm]	Num Pix	Num Det	
LF-1	40	0.30	18	a 95	114	190
LF-2	50	0.30	18	57 76	1:4	152
LF-3	60	0.23	18	57 95	1:4	190
LF-4	68	0.23	18	⁵⁷ 76	114	152
LF-5	78	0.23	18	57 95	114	190
LF-6	89	0.23	18	57 76	114	152
MF-1	100	0.23	12	148	296	1
ME o	110	0.39	12	111		1
MF-3	140	0.30	12	148	296	1
ME 4	100	0.00	12	111	222	1
MF-5	195	0.30	12	148	296	1
MEC	025	0.00	12	111	222	1

HFT - LO-HFT300



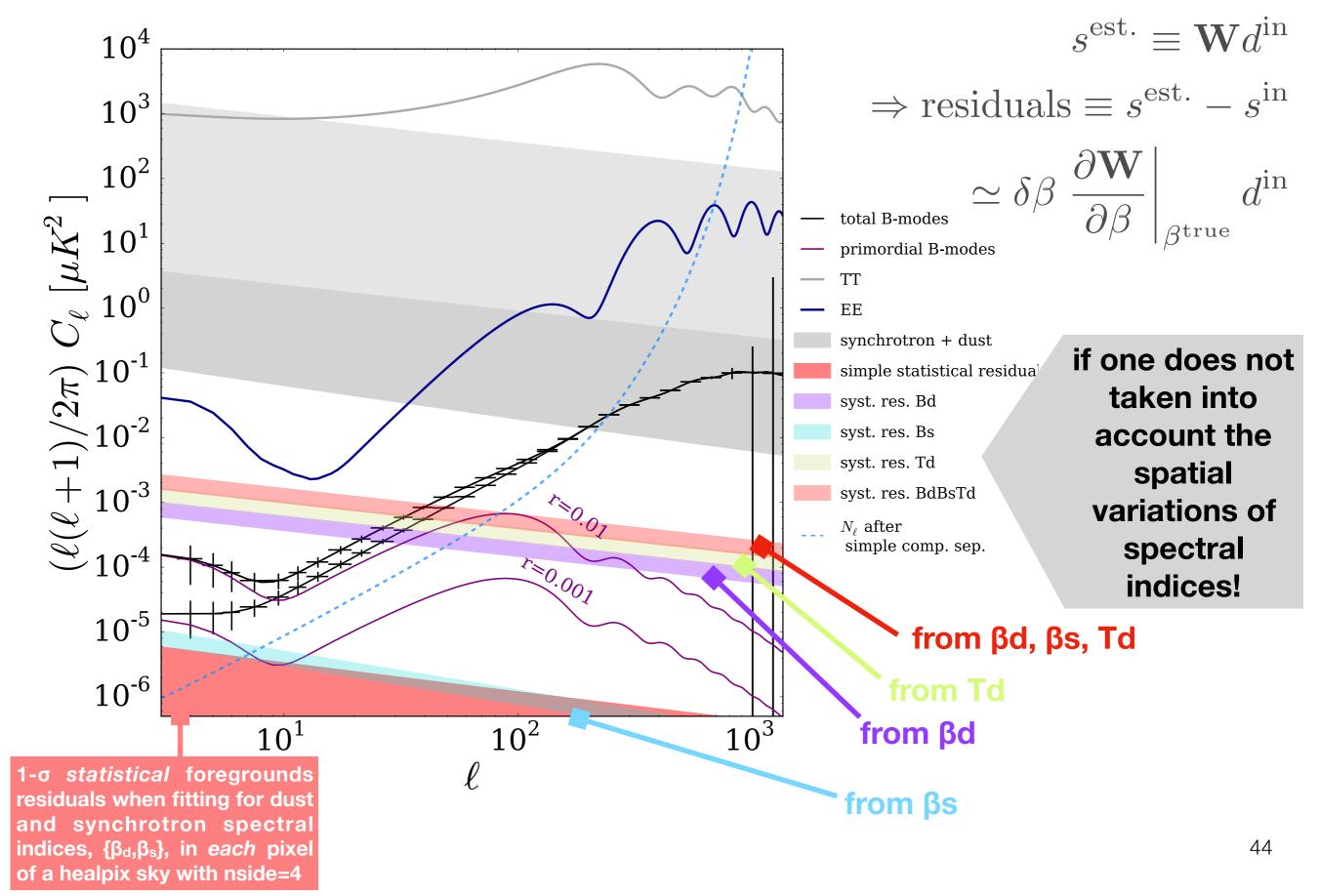
Band	Center Freq [GHz]	Freq BW	Pixel diameter [mm]	Num Pix	Num Det
MF-2	119	0.3	7.7	364	728
MF-4	166	0.3	7.7	364	728
MF-6	235	0.3	7.7	364	728
HF-1	280	0.3	3.9	271	542
HF-2	337	0.3	3.4	331	662
HF-3	402	0.23	2.7	469	938

6



J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

Foregrounds residuals due spatial variability of spectral indices, in the case of LiteBIRD



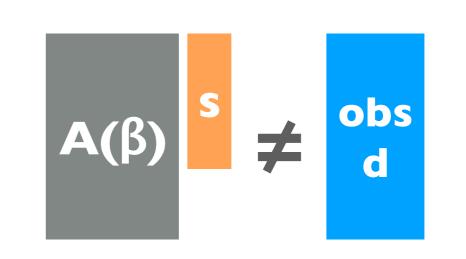
Balance between statistical and systematic errors

$$\boldsymbol{\Sigma} \equiv \begin{bmatrix} \sigma(\beta_d)^2 & \sigma(\beta_d) \\ \star & \sigma(\beta_d) \\ \star & \sigma(\beta_d) \end{bmatrix}$$

$$\begin{array}{ccc} (\beta_d)\sigma(\beta_s) & \sigma(\beta_d)\sigma(T_d) \\ \sigma(\beta_s)^2 & \sigma(\beta_s)\sigma(T_d) \\ \star & \sigma(T_d)^2 \end{array}$$

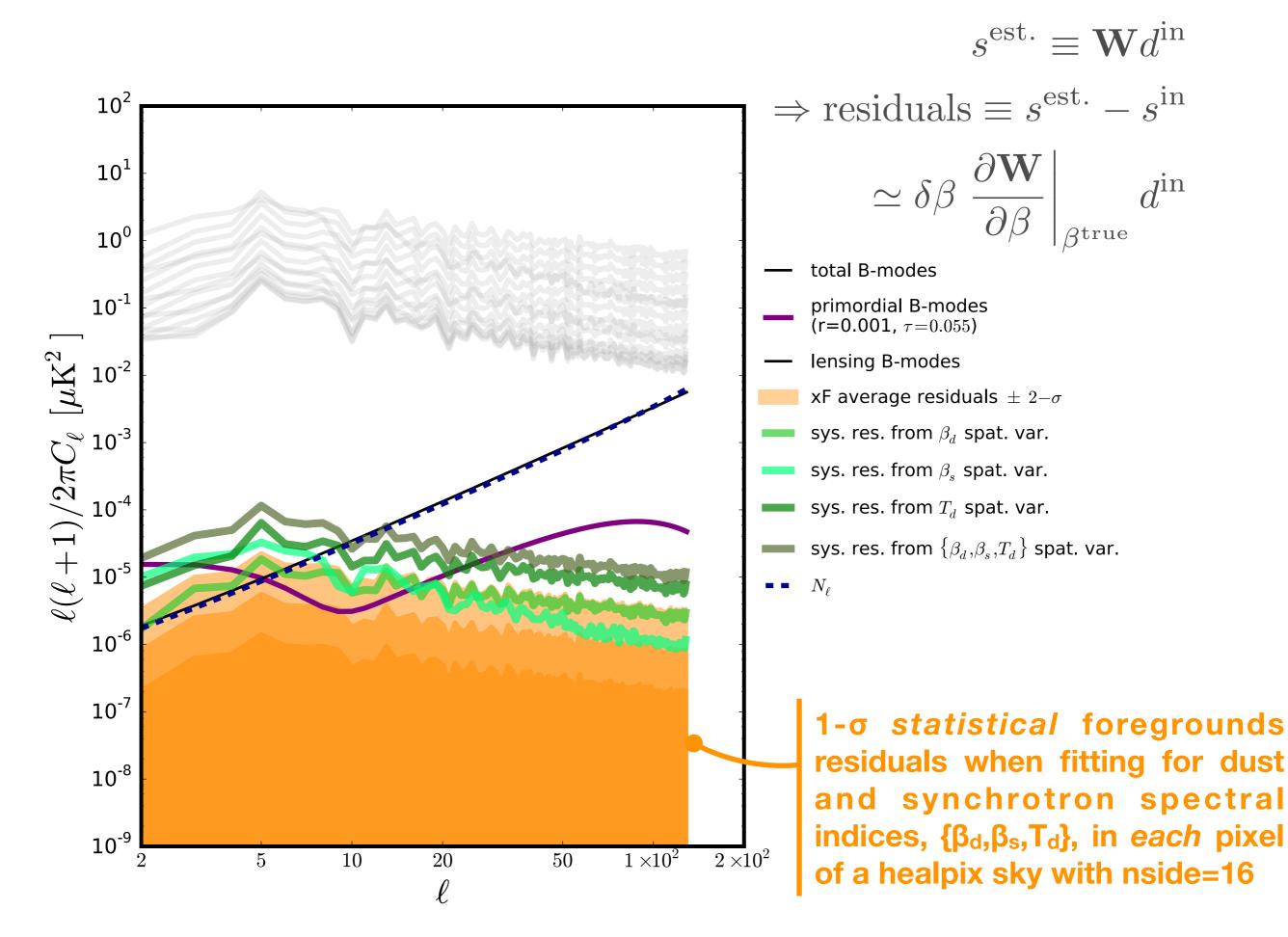
STATISTICAL error bars on spectral parameters

- better signal-to-noise (instrumental sensitivity, more sky pixels to count on for a given spectral index, etc.)
- broad frequency range
- large sky area (more pixels!)



SYSTEMATIC error bars on spectral parameters

- more internal degrees of freedom (free spectral parameters, sky templates, etc.)
- reduced frequency range
- small sky area (less complexity!)



J. Errard – B-modes from space – Berkeley – 4 Dec, 2017

$\ell_{\rm min} \geq 15$

= σ(r) < 0.001 and r_{bias} < σ(r)

	fit for {Bd} true {Bs,Td}	fit for {Bd,Bs} true {Td}	fit for {Bd,Bs,Td}	fit for {Bd,Td} true {Bs}	fit for {Bs} true {Bd,Td}
nside = 2 (sim and cleaning)	1.53e-05 ± 0.000562	3.11e-05 ± 0.000570	0.000207 ± 0.000579	0.000160 ± 0.000572	1.22e-05 ± 0.000562
nside = 4 (sim and cleaning)	8.85e-05 ± 0.000563	0.000217 ± 0.000572	0.00129 ± 0.000600	0.000870 ± 0.000574	7.60e-05 ± 0.000565
nside = 8 (sim and cleaning)	0.000937 ± 0.000583	0.000141 ± 0.000595	0.00737 ± 0.000670	0.00381 ± 0.000643	0.000498 ± 0.000581
nside = 16 (sim and cleaning)	0.00169 ± 0.000608	0.00558 ± 0.000795	0.0221 ± 0.00132	0.0104 ± 0.00107	0.00187 ± 0.000626

Excerpt of our conclusions in Montreal 2017

- we show consistency between xForecast and SMICA on constant spectral indices and PySM simulations
- spatial variability of dust is important to characterize, and high frequency channels are crucial

