#### Dust in 3D from Stellar Photometry

Edward Schlafly<sup>1,2</sup>

G. M. Green A. M. Meisner J. E. G. Peek D. P. Finkbeiner

<sup>1</sup>LBL <sup>2</sup>Hubble Fellow

B-Modes from Space December 4, 2017

#### Introduction



- Dust is a major CMB contaminant
- Complicated morphology, polarized
- Many observational tracers (thermal emission, gas line emission, extinction, ...)
- this talk: stellar photometry to trace dust column and properties

- Idea: use stars as lighthouses to map ISM
- $\blacktriangleright$  Millions of stars from large surveys  $\rightarrow$  high resolution map
- Challenge: only a few photometric bands available to determine distance and reddening to each star



- Idea: use stars as lighthouses to map ISM
- $\blacktriangleright$  Millions of stars from large surveys  $\rightarrow$  high resolution map
- Challenge: only a few photometric bands available to determine distance and reddening to each star



Eddie Schlafly (LBL)

Dust in 3D

- Idea: use stars as lighthouses to map ISM
- $\blacktriangleright$  Millions of stars from large surveys  $\rightarrow$  high resolution map
- Challenge: only a few photometric bands available to determine distance and reddening to each star



Monoceros (99.1, -10.73) (618 stars)

- Idea: use stars as lighthouses to map ISM
- $\blacktriangleright$  Millions of stars from large surveys  $\rightarrow$  high resolution map
- Challenge: only a few photometric bands available to determine distance and reddening to each star



#### 3D Dust Map (Green+2017)

# Does it work?

(movies)

#### Use for CMB studies?



• 0.01 mag E(B - V) statistical uncertainty

- $\blacktriangleright$  20× larger than the uncertainty in 100  $\mu m$  emission
- hard to imagine reaching CMB-like precisions
- known distances to clouds with E(B V) > 0.15
  - Considerable uncertainty in more diffuse clouds
- Not clear how to best use 3D map in CMB context



light from star is "extinguished" passing through a cloud

- absorbed and reradiated at long wavelengths
- scattered

Dust and Light

CMB work focuses on thermal emission, but extinction is also relevant

#### The Extinction curve



Fitzpatrick (1999), Cardelli, Clayton, & Mathis (1989)

#### The Extinction curve



Fitzpatrick (1999), Cardelli, Clayton, & Mathis (1989) Entirely empirical curve, presumably determined by:

- grain size distribution
- grain composition
- grain processing

These properties also determines the dust emission at CMB frequencies.

Eddie Schlafly (LBL)

Dust in 3D

#### Measuring the Extinction Curve

- Simple method: compare spectra of reddened and unreddened stars
- Dates back to Trumpler, Johnson, ...
- Many more stars accessible today



#### Measuring the Extinction Curve

- Simple method: compare spectra of reddened and unreddened stars
- Dates back to Trumpler, Johnson, ...
- Many more stars accessible today



Fitzpatrick & Massa (2007), 328 stars

#### Measuring the Extinction Curve

- Simple method: compare spectra of reddened and unreddened stars
- Dates back to Trumpler, Johnson, ...
- Many more stars accessible today



#### APOGEE & PS1 & 2MASS & WISE, 37000 stars

#### Extinction and Emission are Linked

Can model dust emission with a modified blackbody:  $I(\nu) = \tau_{\nu} B_{\nu}(T) (\nu/\nu_0)^{\beta}$ 

#### Extinction and Emission are Linked

Can model dust emission with a modified blackbody:  $I(\nu) = \tau_{\nu} B_{\nu}(T) (\nu/\nu_0)^{\beta}$ 



Strong correlation between dust SED and R(V)!

# Mapping R(V)



### Mapping R(V)

![](_page_17_Figure_1.jpeg)

Dominant variations on large scales, as also seen in Planck  $\beta$  measurements.

# 3D R(V) Map

### 3D R(V) Map

![](_page_19_Figure_1.jpeg)

Kiloparsec scale sturctures, possible Galactic gradient? Useful for predicting thermal dust SED for CMB dust decontamination?

#### Starlight polarization and dust-polarized emission

![](_page_20_Picture_1.jpeg)

Starlight polarization and dust-polarized emission both come from aligned grains.

Eddie Schlafly (LBL)

Dust in 3D

#### Conclusion

- Accurate 3D dust maps
- Extinction curves measured for tens of thousands of stars
  - Clear correlation between extinction curve and Planck  $\beta$
- 3D dust map can serve as a foundation for unraveling the properties of the ISM in 3D
  - Dust properties
  - Velocity field
  - Magnetic field
- How to use this information to improve CMB studies?

![](_page_21_Figure_9.jpeg)

Does R(V) vary systematically with E(B - V)?

![](_page_22_Figure_1.jpeg)

No correlation between R(V) and E(B - V), but E(B - V) is dust column density rather than volume density tracer. APOGEE Reddening Survey in APOGEE-2 to resolve this issue.

Eddie Schlafly (LBL)

Dust in 3D

#### How does the extinction curve vary spatially?

![](_page_23_Figure_1.jpeg)

#### How does the extinction curve vary spatially?

![](_page_24_Figure_1.jpeg)

Dominant variations on large scales, *not* small scale variations in dense molecular clouds.

Eddie Schlafly (LBL)

Dust in 3D

# Map of R(V) in Orion B

![](_page_25_Figure_1.jpeg)

# Map of R(V) in Orion B

![](_page_26_Figure_1.jpeg)

# Map of R(V) in Mon R2

![](_page_27_Figure_1.jpeg)

# Map of R(V) in Mon R2

![](_page_28_Figure_1.jpeg)

#### **Distance** Catalog

![](_page_29_Figure_1.jpeg)

Schlafly+2014

#### The Orion Dust Ring

Slice dust into foreground, Orion, and background

#### The Orion Dust Ring

Slice dust into foreground, Orion, and background

![](_page_31_Figure_2.jpeg)

#### 2D Comparison: Aquila South

![](_page_32_Figure_1.jpeg)

#### 2D Comparison: Aquila South

![](_page_33_Figure_1.jpeg)

Problems hard to avoid in "reddening" maps based on extinction.

• Future reddening maps will be star-based.

#### Model

$$\vec{m}^m = \vec{f}(T, [\text{Fe/H}]) + \mu + \vec{R} \times E$$

 $\vec{m}^m$  model magnitudes

- $ec{f}$  intrinsic colors ( $n_{
  m band} imes 17$  free parameters)
- T temperature

[Fe/H] metallicity

- $\mu$  distance modulus ( $n_{\mathrm{star}}$  free parameters)
- $\vec{R}$  reddening vector ( $n_{\rm band}$  free parameters)
- *E* extinction ( $n_{\text{star}}$  free parameters)

 $n_{\rm star}=37000$ ,  $n_{\rm band}=10$ , so  $\sim75000$  free parameters, constrained with  $\sim330$ k measurements, solve by expectation-maximization

#### Model versus Observations

![](_page_35_Figure_1.jpeg)

#### Excellent match!

#### Residuals

![](_page_36_Figure_1.jpeg)

#### Residuals near photometric limit!

#### What about variation?

We have intrinsic colors for the objects, so reddenings are easy Assess variation by PCA

![](_page_37_Figure_2.jpeg)

Almost all variation limited to two components

- Extinction curve really is a one-parameter family!
- Higher order components consistent with noise

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

extinction curve is a one-parameter family in the optical to infrared
 decreasing R(V) → increasing curvature (more small grains?)

Eddie Schlafly (LBL)

Dust in 3D

#### How variable is the extinction curve?

![](_page_43_Figure_1.jpeg)

Somewhat smaller dispersion than literature (0.27), many fewer high R(V) sight lines (9.5% in FM07)

### 3D R(V) Map Accuracy

![](_page_44_Figure_1.jpeg)

#### Extinction and Emission are Linked

![](_page_45_Figure_1.jpeg)

Planck (2014)  $\beta$  map

#### Extinction and Emission are Linked

![](_page_46_Figure_1.jpeg)

Large and small scale features in  $\beta$  closely linked to variations in R(V).

► >5e8 PS1 stars

![](_page_49_Figure_1.jpeg)

► >5e8 PS1 stars

![](_page_50_Picture_1.jpeg)

![](_page_51_Figure_1.jpeg)

 Reddening and distance inference

![](_page_51_Figure_3.jpeg)

![](_page_52_Figure_1.jpeg)

 Reddening and distance inference

![](_page_52_Figure_3.jpeg)

![](_page_53_Picture_1.jpeg)

 Reddening and distance inference

![](_page_53_Picture_3.jpeg)

Line of sight fit

Monoceros (99.1, -10.73) (618 stars)

![](_page_54_Picture_2.jpeg)

 Reddening and distance inference

Line of sight fit

![](_page_54_Figure_5.jpeg)

![](_page_55_Picture_1.jpeg)

 Reddening and distance inference

![](_page_55_Picture_3.jpeg)

Line of sight fit

![](_page_55_Picture_5.jpeg)

- Lots of related work!
  - Hanson, R. & Bailer-Jones (2014), (2015)
  - Sale+2014, Sale+2015, Sale+2017
  - Marshall+2006
  - ► Lallement+2014
- New data
  - DECaPS
  - Gaia
  - APOGEE-2, SDSS-V
- New techniques
  - Spatial correlations (Gaussian processes?)
  - Global fit with Galactic structural parameters