

Raphael Flauger

## Background

- In fall 2016 NASA solicited proposals for mission concept studies for probe missions (<1B USD)</li>
- 27 proposals were submitted, 8 were selected for further study

Inflation Probe Mission Concept Study

Galaxy Evolution Probe STROBE-X

Cosmic Evolution through UV Spectroscopy
Transient Astrophysics Probe Concept Study
A High Spatial Resolution X-ray Probe Satellite
Cosmic Dawn Intensity Mapper
Probe of Extreme Multimessenger Astrophysics

## Background

- The studies will conclude with a report in December 2018
- These reports will provide input for the 2020 Astrophysics Decadal Survey
- The main goal is to establish whether probe missions (<1B USD) should be included in NASA's portfolio
- The best outcome would be eight compelling reports with probe mission concepts convincingly <1B USD</li>

- A compelling CMB proposal must demonstrate the need for a space mission and go significantly beyond what can be achieved from the ground
- This requires control over the largest angular scales not accessible from the ground (so far)



 Must control foregrounds and systematics at the few nK level



353 GHz noise scaled to CMB frequencies

l=2...12

 Must control foregrounds and systematics at the few nK level



Far beyond current capabilities

The challenge is to use maps with auto-spectra shown below to tell the difference between (r=0)...



and r=0.001...





Foregrounds dominate by orders of magnitude at all frequencies even in the cleanest patches

The goal of the workshop was to identify a path forward for the treatment of foregrounds for the probe mission study and other CMB experiments

- Identify the state of the art
- Identify steps beyond the current state of the art feasible on the time scale appropriate for the report
- Identify steps forward for the longer term

Slides available at <a href="mailto:cmbworkshop2017.ucsd.edu">cmbworkshop2017.ucsd.edu</a>

#### Wednesday

Observational Status I - High Frequencies

Jean-Loup Puget

Francois Boulanger

**Tuhin Ghosh** 

Chris Sheehy

Observational Status II - Low Frequencies

Carlo Baccigalupi

Nicoletta Krachmalnicoff

Michael Jones

Flavien Vansyngel

#### Wednesday

Galactic Modeling I

Clem Pryke

Susan Clark

**Brandon Hensley** 

Jens Chluba

Alex Lazarian

Galactic Modeling II

Chang-Goo Kim

Ka Ho Yuen

Alexei Kritsuk

**David Collins** 

## HI data and dust emission

Susan Clark

High-latitude GALFA-HI structures are aligned with the Planck magnetic field orientation.



### HI data and dust emission

Susan Clark



Chang-Goo Kim



#### Synthetic dust-polarization map for case A

8





- ullet Projection orthogonal to the mean field  $oldsymbol{b}_0$
- Texture POS magnetic field; Color column density; Pseudo-vectors polarization

#### $m{B}$ -mode spectra and $m{E}$ -to- $m{B}$ ratios for case $m{A}$

10

Alexei Kritsuk



ullet Statistical sample includes 210 projections based on 70 flow snapshots at  $512^3$ 

These simulations together with a simple model for dust and synchrotron emission form the basis of model 6 in the CMB-S4 CDT report



#### **Thursday**

Extragalactic Modeling

Marcelo Alvarez

Colin Hill

Gianfranco DeZotti

Delivering the total sky

Jacques Delabrouille

Ben Thorne

Adrian Liu

**Carlos Hervias** 

Julian Borrill

## **Extragalactic sources**

#### Gianfranco DeZotti



#### **Thursday**

**Analysis** 

Mathieu Remazeilles Josquin Errard Alex van Engelen

Working groups

Galactic foregrounds
Extragalactic foregrounds
Delivering the total sky
Analysis

#### **Friday**

Reports from working groups

Galactic foregrounds
Extragalactic foregrounds
Delivering the total sky
Analysis

Planning the next steps

We can use help in all working groups and anyone interested in the study is welcome to contribute.

If you would like to contribute, or just keep up to date, you can sign up for the mailing list

https://support.physics.umn.edu/wws/info/cmbprobe

# Thank you