Design and physical optics evaluation of LiteBIRD optical system

Hiroaki Imada (ISAS/JAXA) and LiteBIRD Phase A1 team

研究拠点形成事 Core-to-Core Program

B-mode from Space, 5 Dec. 2017

Outline

stand a Miley

- 1.Introduction
- 2.Requirements of beam patterns
	- Main lobe and side lobes
- 3.Factors to determine beam patterns
	- Edge taper (independent of a specific system)
	- Feeds and optical elements (dependent on a specific system)
- 4.LiteBIRD LFT design study
	- Lens-let diameter
	- Arrangement of bands on focal plane
- 5.Beam patterns in the lowest bands
	- Lens-let diameter
	- Arrangement of bands on focal plane
- 6.Conclusion

1. Introduction

- ❖ Lite (Light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection
	- aiming at measuring CMB B-mode polarization originated from the primordial gravitational wave
- **❖ Mission goal**
	- the uncertainty of the tensor-to-scalar ratio δ*r* is less than 0.001
- **❖ Mission requirements**
	- angular multipole: $2 \le l \le 200$
	- observing frequency: 34 448 GHz \circ
	- mission lifespan: > 3 years \circ
	- operation: at the 2nd Lagrange point

Telescope overview

TANE ALEXAN

- ❖ Two telescopes are needed
	- to cover the wide range of frequency (15 bands)
		- ➡ Low Frequency Telescope (LFT), High Frequency Telescope (HFT)
- ❖ Requirements (relating to optical system)
	- \circ beam size: \sim 1 deg.
		- ✓ multipole range of 2 ≤ *l* ≤ 200
	- aperture diameter: 400 mm for LFT, 200 mm for HFT
		- ✓ the beam size and the lowest frequencies
	- \circ FoV: 20 x 10 deg² for LFT, 10 x 10 deg² for HFT
		- ✓ sensitivity
	- beam pattern: the details in next page
		- ✓ contamination to CMB B-mode signal

2. Requirements of beam patterns

❖ Contamination of false B-mode signal should be less than 1% of the lensing B-mode (R. Nagata)

THAT IN THE RESIDENT OF A

- the values in the following table correspond to 1% lensing \circ
- if some values exceed, make an effort into data analysis \circ

1corresponding to the case one polarized detector is used 2corresponding to the case two polarized detectors are used

2. Requirements of beam patterns

❖ Contamination of false B-mode signal should be less than 1% of the lensing B-mode (R. Nagata)

6

2. Requirements of beam patterns

❖ Contamination of false B-mode signal should be less than 1% of the lensing B-mode (R. Nagata)

7

- ❖ two types
	- independent of a specific system
		- ✓ edge taper
	- dependent on a specific system
		- ✓ feeds, optical elements, and configuration
- ❖ Just a reminder
	- o edge taper: relative intensity at a point apart from maximum

- ❖ Common factor
	- Edge Taper
		- ✓ envelope level
		- ✓ main lobe size
- ❖ Specific factors for LiteBIRD
	- o feed
		- ✓ main lobe ellipticity
		- ✓ side lobes
	- diffraction at mirror edges
		- ✓ relatively diffuse structure
	- configuration
		- ✓ point-like structure
	- these are additional components, so ideally, they should be suppressed

❖ Edge taper

- determined by the lens-let diameter \circ
- the lens-let diameter is given by sensitivity \circ
	- ✓ cf. for -60 dB envelope, the edge taper of 30 dB and lens-let size of 90 mm
		- ➡ cannot satisfy, so make an effort in analysis

❖ Diffraction at mirror edges

- once we choose edge taper, the beam size \circ in a system is determined
	- ✓ the requirement of mirror size to avoid additional side lobe
- ❖ Feed and baffling (configuration)
	- a beam pattern with a realistic feed can be calculated \circ
	- then, adjusting configuration and considering baffling structures

- ❖ Requirement of mirror size
	- serration or rolled edge at mirror edges is assumed \circ
	- mirror size is set large in order that the beam intensity at edges is less than \circ
		- \checkmark 5 dB for the edge taper of 1.5 dB at aperture
		- ✓ 7 dB for the edge taper of 3 dB at aperture

- ❖ Current design
	- cross-Dragonian telescope
		- ✓ extremely wide field of view
- ❖ If the lens-let diameter is assumed to be 18 mm
	- edge taper: 1.1 dB at 34 GHz
	- mirror size:
		- $\sqrt{900}$ mm x 900 mm for a FoV of 4 x 4 deg²

- \rightarrow lowest bands should be put at the center of the focal plane
- disadvantage
	- ✓ hard to put a baffle at the focal plane
	- \checkmark stray light: feed -> primary -> secondary -> primary -> aperture
	- \checkmark large loading from 2 K cold stop (at aperture) at lower frequencies
		- \rightarrow reducing sensitivity (23% comes from the sky, 77% from the stop)

890 mm

- ❖ If the lens-let diameter is assumed to be 30 mm
	- edge taper: 3.0 dB at 34 GHz \circ
	- mirror size: Ω
		- $\sqrt{800 \text{ mm}}$ x 800 mm (FoV of 12 x 4 deg²)
		- \checkmark sufficient for higher bands (20 x 10 deg²)
	- band arrangement \circ

B-mode from Space, 5 Dec. 2017

- ❖ How about LF2 at focal plane edge?
	- the lowest is 42.5 GHz
	- edge taper: 1.7 dB (18 mm), 4.7 dB (30 mm) \circ
- ❖ LF1 occupies the center
	- LF2 has to be at the edge but beams are too broad for 18 mm lens-let

➡ the same case as 34 GHz

- ❖ Sensitivity (enhanced LFT)
	- black:
		- $\sqrt{5}$ * 18 mm lens for LF1
		- $\sqrt{4}$ * 18 mm lens for LF2
	- red:
		- $\sqrt{5}$ * 30 mm lens for LF1
		- $\sqrt{4}$ * 30 mm lens for LF2

❖ Results

- improvement at the lowest frequencies
	- ✓ loading from stop decreases
- reducing sensitivity at 68, 78, and 89 GHz \circ
	- ✓ the number of detectors decreases
- there is room to adjust a combination
- e.g. $3 * 18$ mm + $2 * 30$ mm (LF1), $2 * 18$ mm + $2 * 30$ mm (LF2)

5. Beam patterns in the lowest bands

❖ Model

- 400-mm aperture, F/3.5 \circ
- three elements
	- ✓ two anamorphic aspherical mirrors w/ serration
	- ✓ a cold aperture stop
- \circ 34 and 42.5 GHz
- elliptical Gaussian beam
	- ✓ corresponding to a 30-mm lens-let beam
	- ✓ 34 GHz at the black arrows
	- ✓ 42.5 GHz at the red arrows
- ❖ Stray light is included
	- up to triple bounces

✓ e.g. feed -> secondary -> primary -> secondary -> aperture -> sky

5. Beam patterns at 34 GHz

5. Beam patterns at 42.5 GHz

6. Conclusion

❖ The requirements of a beam pattern are introduced

- main lobe: not so strict
- side lobes: -60 dB (ring/diffuse), inequalities (point-like)
- ❖ What determines beam shape
	- edge taper, feed, diffraction at edges, and configuration
- ❖ To avoid additional side lobe originated from diffraction at mirror edges
	- 30 mm lens-let is better for the lowest bands
		- ✓ sensitivity is also improved
	- LF1 is located at the center of focal plane
	- there is room to discuss how many modules are changed to 30-mm
- ❖ PO simulation at 34 GHz and 42.5 GHz
	- triple bounce stray light can be seen \circ
	- next steps: lens-let pattern, then baffling