Design and physical optics evaluation of LiteBIRD optical system

Hiroaki Imada (ISAS/JAXA) and LiteBIRD Phase A1 team

研究拠点形成事業 Core-to-Core Program

B-mode from Space, 5 Dec. 2017

Dutline

the set & - Adve

- 1. Introduction
- 2. Requirements of beam patterns
 - Main lobe and side lobes
- 3. Factors to determine beam patterns
 - Edge taper (independent of a specific system)
 - Feeds and optical elements (dependent on a specific system)
- 4. LiteBIRD LFT design study
 - Lens-let diameter
 - Arrangement of bands on focal plane
- 5. Beam patterns in the lowest bands
 - Lens-let diameter
 - Arrangement of bands on focal plane
- 6. Conclusion

1. Introduction

- Lite (Light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection
 - aiming at measuring CMB B-mode polarization originated from the primordial gravitational wave
- Mission goal
 - the uncertainty of the tensor-to-scalar ratio δr is less than 0.001
- Mission requirements
 - angular multipole: $2 \le l \le 200$
 - observing frequency: 34 448 GHz
 - mission lifespan: > 3 years
 - operation: at the 2nd Lagrange point

Telescope overview

- Two telescopes are needed
 - to cover the wide range of frequency (15 bands)
 - → Low Frequency Telescope (LFT), High Frequency Telescope (HFT)
- Requirements (relating to optical system)
 - beam size: ~ 1 deg.
 - ✓ multipole range of $2 \le l \le 200$
 - aperture diameter: 400 mm for LFT, 200 mm for HFT
 - \checkmark the beam size and the lowest frequencies
 - FoV: 20 x 10 deg² for LFT, 10 x 10 deg² for HFT
 - ✓ sensitivity
 - beam pattern: the details in next page
 - ✓ contamination to CMB B-mode signal

2. Requirements of beam patterns

- Contamination of false B-mode signal should be less than 1% of the lensing B-mode (R. Nagata)
 - the values in the following table correspond to 1% lensing
 - if some values exceed, make an effort into data analysis

main lobe	w/ rotating HWP ¹	w/o rotating HWP ²	note
FWHM	~ 1 deg.	~ 1 deg.	$2 \le l \le 200$
ellipticity	~ 10%	~ 7%	CMB E to B leakage
diff. gain	-	2 x 10-5	CMB T to B leakage
diff. pointing	_	2"	CMB T to B leakage
diff. FWHM	-	2 x 10-3	CMB T to B leakage
diff. ellipticity	-	4 x 10 ⁻⁴	CMB T to B leakage

¹corresponding to the case one polarized detector is used ²corresponding to the case two polarized detectors are used

2. Requirements of beam patterns

Contamination of false B-mode signal should be less than 1% of the lensing B-mode (R. Nagata)

side lobe	w/ rHWP	w/o rHWP	note
ring/diffuse	-15 dB	-50 dB	CMB T to B leakage
	-10 dB	-45 dB	foreground I to B
	-60 dB	-60 dB	polarized foreground
point-like	$(r/7 \text{ deg})^*(\text{intensity}/3\%)^*(d/30') \le 1$	$(r/7 \text{ deg})^*(\text{intensity}/3\%)^*(d/30') \le 1$	CMB E to B leakage
	$(intensity/0.1\%)^*(d/30') \le 1$	$(intensity/0.1\%)^*(d/30') \le 1$	polarized foreground

6

2. Requirements of beam patterns

Contamination of false B-mode signal should be less than 1% of the lensing B-mode (R. Nagata)

side lobe	w/ rHWP	w/o rHWP	note
ring/diffuse	-15 dB	-50 dB	CMB T to B leakage
	-10 dB	-45 dB	foreground I to B
	-60 dB	-60 dB	polarized foreground
point-like	$(r/7 \text{ deg})^*(\text{intensity}/3\%)^*(d/30') \le 1$	$(r/7 \text{ deg})^*(\text{intensity}/3\%)^*(d/30') \le 1$	CMB E to B leakage
	$(intensity/0.1\%)^*(d/30') \le 1$	$(intensity/0.1\%)^*(d/30') \le 1$	polarized foreground

7

- two types
 - independent of a specific system
 - ✓ edge taper
 - dependent on a specific system
 - ✓ feeds, optical elements, and configuration
- ✤ Just a reminder
 - edge taper: relative intensity at a point apart from maximum

- Common factor
 - Edge Taper
 - ✓ envelope level
 - ✓ main lobe size
- Specific factors for LiteBIRD
 - feed
 - ✓ main lobe ellipticity
 - ✓ side lobes
 - diffraction at mirror edges
 - ✓ relatively diffuse structure
 - configuration
 - ✓ point-like structure
 - these are additional components, so
 ideally, they should be suppressed

angle [deg.]

B-mode from Space, 5 Dec. 2017

Edge taper

- determined by the lens-let diameter
- the lens-let diameter is given by sensitivity
 - ✓ cf. for -60 dB envelope, the edge taper of 30 dB and lens-let size of 90 mm
 - cannot satisfy, so make an effort in analysis

Diffraction at mirror edges

- once we choose edge taper, the beam size in a system is determined
 - \checkmark the requirement of mirror size to avoid additional side lobe
- Feed and baffling (configuration)
 - a beam pattern with a realistic feed can be calculated
 - then, adjusting configuration and considering baffling structures

Requirement of mirror size

- serration or rolled edge at mirror edges is assumed
- mirror size is set large in order that the beam intensity at edges is less than
 - \checkmark 5 dB for the edge taper of 1.5 dB at aperture
 - \checkmark 7 dB for the edge taper of 3 dB at aperture

- Current design
 - cross-Dragonian telescope
 - ✓ extremely wide field of view
- ✤ If the lens-let diameter is assumed to be 18 mm
 - edge taper: 1.1 dB at 34 GHz
 - mirror size:
 - $\checkmark \sim 900 \text{ mm x } 900 \text{ mm for a FoV of 4 x 4 deg}^2$

- Iowest bands should be put at the center of the focal plane
- disadvantage
 - \checkmark hard to put a baffle at the focal plane
 - ✓ stray light: feed -> primary -> secondary -> primary -> aperture
 - ✓ large loading from 2 K cold stop (at aperture) at lower frequencies
 - → reducing sensitivity (23% comes from the sky, 77% from the stop)

890 mm

- ✤ If the lens-let diameter is assumed to be 30 mm
 - edge taper: 3.0 dB at 34 GHz
 - mirror size:
 - $\checkmark \sim 800 \text{ mm x } 800 \text{ mm (FoV of } 12 \text{ x 4 deg}^2)$
 - ✓ sufficient for higher bands ($20 \times 10 \text{ deg}^2$)
 - band arrangement

How about LF2 at focal plane edge?

- the lowest is 42.5 GHz
- edge taper: 1.7 dB (18 mm), 4.7 dB (30 mm)

✤ LF1 occupies the center

 LF2 has to be at the edge but beams are too broad for 18 mm lens-let

→ the same case as 34 GHz

- Sensitivity (enhanced LFT)
 - black:
 - \checkmark 5 * 18 mm lens for LF1
 - ✓ 4 * 18 mm lens for LF2
 - red:
 - \checkmark 5 * 30 mm lens for LF1
 - ✓ 4 * 30 mm lens for LF2

Results

- improvement at the lowest frequencies
 - ✓ loading from stop decreases
- reducing sensitivity at 68, 78, and 89 GHz
 - \checkmark the number of detectors decreases
- there is room to adjust a combination
- e.g. 3 * 18 mm + 2 * 30 mm (LF1), 2 * 18 mm + 2 * 30 mm (LF2)

5. Beam patterns in the lowest bands

✤ Model

- 400-mm aperture, F/3.5
- three elements
 - ✓ two anamorphic aspherical mirrors w/ serration
 - \checkmark a cold aperture stop
- 。 34 and 42.5 GHz
- elliptical Gaussian beam
 - ✓ corresponding to a 30-mm lens-let beam
 - \checkmark 34 GHz at the black arrows
 - \checkmark 42.5 GHz at the red arrows
- Stray light is included
 - up to triple bounces

e.g. feed -> secondary -> primary -> secondary ->
aperture -> sky

5. Beam patterns at 34 GHz

B-mode from Space, 5 Dec. 2017

5. Beam patterns at 42.5 GHz

6. Conclusion

The requirements of a beam pattern are introduced

- main lobe: not so strict
- side lobes: -60 dB (ring/diffuse), inequalities (point-like)
- What determines beam shape
 - o edge taper, feed, diffraction at edges, and configuration
- To avoid additional side lobe originated from diffraction at mirror edges
 - 30 mm lens-let is better for the lowest bands
 - ✓ sensitivity is also improved
 - LF1 is located at the center of focal plane
 - there is room to discuss how many modules are changed to 30-mm
- ✤ PO simulation at 34 GHz and 42.5 GHz
 - triple bounce stray light can be seen
 - next steps: lens-let pattern, then baffling