Cosmic Rays in SPIDER and Space

03Dec2017 - Jeff Filippini

for B. Osherson, R.V. Gramillano, J. Fu, R. Gualtieri and the SPIDER collaboration

Cosmic Rays

COMPOSITION

- Space: "primaries", largely galactic protons (some alphas, nuclei, e+/e-)
- LDB: similar, but geomagnetic cutoff
- **Ground**: ~100x lower, mostly secondary **muons**

- Mean energy deposition set primarily by thickness
 Bolometer (150x300x2.5µm): ~250 eV, ~1/minutes
 Wafer (50cm²x500µm): ~50 keV, 250 Hz
- Scatter, long tail to high-E, secondaries, ... need Monte Carlo sims (GEANT, Fluka)

Planck-HFI at L2

- Laboratory tests identified origins of event classes Catalano+ 2014, Planck 2013 X
 - **Bolometer** hits manageable: $\Delta t_{between}/t_{recovery} \sim 10^3$
 - Wafer hits problematic: $\Delta t_{between}/t_{recovery} \sim 1$
- Two coupled problems
 - Strong response to wafer hits ⇒ high rate
 - Long time constants ⇒ long excisions/fits
- Also cold plate power loading, rare high-multiplicities, ...

Wafer area: 0.4-0.8 cm²

Planning for Space

WHAT'S NEW?

Monolithic detector arrays

- Large (4"-6") wafers ⇒ expected rate >100 Hz!
- 100+ bolometers per wafer ⇒ high multiplicity?
- **Thermal architecture**: Long time constants? Wafer temperature excursions?
- Ballistic phonon response: How large an area does each bolometer respond to?
- Multiplexed readout electronics
 - Shared readout ⇒ high multiplicity?
 - Readout crosstalk: How big? Nonlinear crosstalk for large bolometer ΔR?
 - Direct effects on readout (SQUIDs, resonators)?

SPIDER 30°W 0° 30°E

McMurdo LDB flight

January 1-18, 2015 Altitude ~36 km Mapped ~10% sky

- Six monochromatic refracting telescopes, HWPs
- CIT/JPL antenna-coupled TES arrays
 - 1488 (816) at 150 (95) GHz, 96 dark, >80% yield
 - Time-division multiplexer (UBC MCE)
 - 2018: add NIST feedhorn-array 285 GHz receivers

- 24x 4" wafers: 50cm²x500µm
- Bolometers: 150x300x2.5µm
- Ti TES: T_{fpu}=0.3K, T_c=0.5K
- 100s of Au wire bonds/wafer

Supporting Data

South Pole 2010-12: BICEP2

- Glitches ~daily / bolometer
 Disfavors large wafer response
- Rare "steps" in data DC level Speculated to be cosmic rays

Caltech 2012: S-35, Keck wafer

- 167 keV endpoint beta
- Proxy for cosmic rays hitting the **island**

FLUKA simulations: TES island

UIUC 2017: Am-241, SPIDER wafer

- 5.5 MeV alpha ~fully absorbed in wafer
- Proxy for cosmic rays hitting the **wafer** Comparable to bigger (<1 Hz) depositions

SPIDER 2015

- Identify glitches in otherwise unflagged flight data
- Template fit and shape cuts
- Integrate in power units for approximate energy (E_{ETF}) Significant nonlinearity above a few keV

Samples @119 Hz

Glitch Types

"STANDARD" GLITCHES

- Stacked α data, 15 kHz sampling Similar performance in β data (S35)
 - Primary time constant 1-3 ms
 - Additional time constants <10 ms
 - TES saturation at O(10 keV)
- Known ~0.5% nearest-neighbor crosstalk from SQUID multiplexer

"STEP" GLITCHES

- Lab β data, 104 kHz sampling
- "Flux slips": Mux loses lock on large events, baseline shifts by SQUID period
- Threshold similar to saturation can be tuned away in new design
- Also identified in BICEP2 ground data

Wafer Hit Tests

AM-241 TEST JIG

SPIDER-1 150 GHz tile

Collimated Am-241 (5.5 MeV a, 60 keV γ)

~6 Hz/spot on *wafer*

~0.1 Hz/spot on *island*

- Am-241 data, 126 Hz sampling
- Source over island (and wafer)
 Steps ~0.07 Hz (likely alphas)
 Glitches ~0.14 Hz
- Source over wafer
 Glitch and step rate ~1/ (5 min)
- Coincidence rate negligible Skewness and noise correlation analysis in progress

Conclusions

- SPIDER LDB 2015
 - Modest data loss from CR glitches
 - Low coincidence rate
 - Rate comparable to island hit expectations
- Laboratory tests clarify phenomenology
 - Low coincidence rate, saturation
 - Multiplexer effects: flux slips, crosstalk
- Future work
 - Closer look at position dependence?
 - Constraints on multiplexer design?
 - Move to 100mK: thermal design gets harder!

