Partord C-Band All-Sky Survey (C-BASS)

CCCC

Mike Jones

University of Oxford

P_{hysics} C-Band All-Sky Survey (C-BASS)

University of Oxford, UK

Angela Taylor, Mike Jones, Jamie Leech,, Luke Jew, Richard Grummit, Jaz Hill-Valler, Alex Pollak

Hochschule München, Germany

Christian Holler

University of Manchester, UK

Clive Dickinson, Paddy Leahy, Mike Peel, Adam Barr

Caltech, USA

Tim Pearson, Tony Readhead,

South Africa

Justin Jonas (Rhodes/SKASA), Cynthia Chiang, Heiko Heligendorff, Moumita Aitch (UKZN)

KACST, Saudi Arabia

Yasser Hafez

Moved on...

Oliver King, Matthew Stevenson, Mel Irfan, Stephen Muchovej, Joe Zuntz, Charles Copley

The C-BASS Survey

C-BASS - Overview

Sky-coverage	All-sky
Angular resolution	0.75 deg (45 arcmin)
Sensitivity	< 0.1mK r.m.s (confusion limited in I)
Stokes coverage	I, Q, U, (V)
Frequency	1 (0.7) GHz bandwidth, centered at 5 GHz
Northern site	OVRO, California
	Latitude, 37.2 deg
Southern site	MeerKAT site, Karoo, South Africa Latitude -30.7 deg

Intensity

Intensity

Polarization

Polarization

xford

hysics

xford

hysics

C-BASS North Telescope

- 6.1-m dish, with Gregorian optics
- Secondary supported on foam cone
- Receiver sat forward of the dish
- Very clean, circularly-symmetric optics
- Absorbing baffles to minimize spillover

D_{hysics} **C-BASS North: beam measurements**

e Holler et al. 2011, arXiv:1111.2702v2)

C-BASS South Telescope

- CBASS South at Klerefontein, Karoo desert, South Africa (SKA support site)
- 7.6m ex-telecoms dish
- Cassegrain optics

kford

hysics

 Similar receiver to north – but frequency resolution (128 ch)

C-BASS Receiver

Both receivers use correlation polarimeter and continuous comparison radiometer:

- Correlate RCP & LCP \rightarrow Q, U
- Difference RCP & LCP separately against internal load \rightarrow I, V

C-BASS North Receiver

Analogue polarimeter/radiometer – all done with hybrids and diodes...

Sky and load signals separated post-amplification, squared and differenced – gives *I* relative to loads

RCP and LCP complex multiplied – gives Q + iU

C-BASS South Receiver

Downconversion to 0 - 0.5, 0.5 - 1 GHz

Sample at 1 GHz, channelise to 64 channels each, calibrate gains Square and difference sky and load $\rightarrow I$; correlate RCP, LCP $\rightarrow Q$, U

Continuous-comparison radiometer rejects 1/f noise by comparing the sky signal to a stabilized load signal.

- 1/f in single I channel is reduced by a factor of ~20 relative to raw sky signal
 knee frequency moved from ~ 4Hz to 0.2Hz
- Q and U have knee-frequencies < 10mHz
- The receiver is stable over full azimuth scans (90s) can extract data over full-sky

Scan Strategy

- 360 deg azimuth scans at elevation of poles + 10, 20, 30...
- Scan as fast as possible: ~4 deg/s
- One scan ~ 90 s

xford

hysics

• Use 5 slightly different scan speeds so fixed frequency ≠ same sky modes

CBASS-N data: Null tests

xford

hysics

408 MHz - 5 GHz – 23 GHz

408 MHz - 5 GHz - 23 GHz

Freefree AME Steep Shallow synch synch

3-colour zoom-ins

NCP

NPS

3-colour zoom-ins

Cygnus A

Perseus molecular cloud

P_{hysics} First look at the spectral index – *TT* plots

- *TT* plots Haslam C-BASS
- Fit for a single power law plus outliers (ignored in fit for β)
- Work our way up the North Polar Spur
- β generally gets steeper but lots of complication...

0.08

36

36

Region 39

0.04

Region 41 50 Haslam [K] 30 $\beta = 2.94 \pm 0.00389 (2.94)$ 0.000 C-BASS [K] 0.010 -0.010

Region 38

32.5

27.5

22.5

Haslam [K]

Conclusions:

- Intensity spectral index seems to steepen with increasing Galactic latitude
- But it's complicated and multiple components are mixed up on quite small scales

•]

ılysis - Commander

Provide Stress Zero level from source counts (work in progress)

Need zero level of I map for component fitting (zero level of raw map is arbitrary)

- Select quiet patches of sky
- Calculate pixel distribution due to discrete sources (GB6) and confused sources (S³ model)
- Fit CBASS pixels plus offset

Seems to be consistent at least at $\sim 1 \text{ mK}$ level - TBC

CBASS-N P

Polarized spectral indices 5 - 30 GHz

Φ_{hysics} Real variations in polarized $\beta(1)$

Distribution of β vs error on β - Dashed lines indicate 1-, 2- σ deviations from mean Adjacent regions with low σ_{β} but very different β

(a) $N_{\rm side} = 16$

Downgraded maps of β , σ_{β} – variations >> σ_{β} on large scales

$\Phi_{\rm hysics}$ *P* maps extrapolated to 100 GHz

CBASS-All-Sky (first go!)

- Reducing Northern data now observations finished
- First set of data papers based on el=37 data only in next few months
- No public data release yet, but keen to work with other groups with complementary data/analysis tools.
- Southern survey happening now 1-2 yrs data taking expected in south
- Full data release once surveys completed and combine.

Next-BASS

- Still not enough measurements to constrain all likely foreground components
 - -.408 5 23 30: 4 measurements, vs
 - Synch with curvature/self-absorbtion (5-6 params) free-free
 (2) AME with multiple components (3-4?): 10-12 params
- Ideally fill in complete frequency space between C-BASS and satellite frequencies: 6 30 GHz or higher.
- Sensitivity at least equivalent to CMB experiments at $\sim 100 \text{ GHz}$: 1 μ K-arcmin x frequency lever-arm
- Resolution at least as good as C-BASS: ~6 m telescope
- High frequency resolution for RFI/line emission removal

Intensity

Intensity

xford

hysics

Polarization

Polarization

Next-BASS?

40.0

Amplitude [dB]

0.0

-20.0

E_co → 0.0 deg [Amplitude]
 E_cx → 45.0 deg [Amplitude]

- 6-m aperture Compact Range antenna (aka Crossed Dragone)
 - Large focal plane
 - Easy to completely shield
- C-BASS-style radiometer/polarimeter for stability
- Two feed types
 - 7 15 GHz
 - 15 30 GHz
- Digital backend based on SKA designs

NextBASS+ – intensity

NextBASS+ - intensity

NextBASS+ – polarization

- Doing design work on optics, feeds, OMTs, digital receivers...
- Extending simulations to more realistic models/modelling errors
- Proposal with European Research Council (last chance before Brexit...)
- With more limited funding can use ex-Clover 2-m telescope – better than nothing!

