Component Separation at B-modes from Space

Carlo Baccigalupi The International School for Advanced Studies (SISSA), Trieste Berkeley, December 6th, 2017

Outline

- Planck Component Separation
- The relevance of Simulations
- Updated Contamination on B-modes from Galactic foregrounds
- B-mode Component Separation
- Conclusions

Planck Component Separation

F=A (sky direction) × F(frequency)

Gas thickness decreases to a few Kpc simple parametrization is possible

Gas too thick, lots of processes ongoing, very hard to describe with simple models

Gas thickness decreases to a few Kpc simple parametrization is possible

X = A S + N

F=A (sky direction) × F(frequency)

- On foregrounds you...
 - Know nothing
 - Know something

- Thus if you...
 - Know nothing, you
 - Look for minimum variance internal linear combination
 - Know something, you
 - Model foreground unknowns and fit

- Opearting domains: you can choose to cast your minimum variance search, or your fit, in
 - Pixel domain
 - Harmonic domain
 - Intermediate (needlets, wavelets) domain

- Thus if you...
 - Know nothing, you
 - Look for minimum variance internal linear combination
 - In the pixel domain
 - In the needlet domain
 - Know something, you
 - Model foreground unknowns and fit
 - In the pixel domain
 - In the needlet domain

• Thus if you...

planck

- Know nothing, you
 - Look for minimum variance internal linear combination
 - In the pixel domain SEVEM
 - In the needlet domain NILC
- Know something, you

planck

- Model foreground unknowns and fit
 - In the pixel domain COMMANDER
 - In the needlet domain SMICA

Planck 2013, XII, 2015, IX, X, 2017, in preparation

• Thus if you...

planck

- Know nothing, you
 - Look for minimum variance internal linear combination
 - In the pixel domain SEVEM (CMB only)
 - In the needlet domain NILC (CMB only)
- Know something, you

planck

- Model foreground unknowns and fit
 - In the pixel domain COMMANDER (CMB and foregrounds)
 - In the needlet domain SMICA (CMB and foregrounds)

Planck 2013, XII, 2015, IX, X, 2017, in preparation

Planck Foregrounds

- Main foreground monitor in present constraints on B-modes
- Guidance for current design study of forthcoming and long term probes
- New studies coming soon with the third data release, new dust analyses, new release of products,

Planck 2013, XII, 2015, IX, X, 2017, in preparation

Planck U

O Solution differences,

planck

planck

Planck T

Planck T: 2013-2015 differences

Commander 2013-2015

NILC 2013-2015

Planck 2015, IX

 μK

15

-15

planck

Solution differences,

Angular Power Spectra see Graca's talk next

Relevance of Simulations

• Exploitation of Full Focal Plane Simulation in Component Separation:

planck

- Validation,
- Diagnostics

Full Focal Plane Simulations from a Component Separation Perspective

- The Full Focal Plane Simulations (Planck 2015, XII) consist of
 - 10000 CMB and noise realizations
 - Anomalous dust, CIB, CO lines, dust, extra-Galactic infrared and radio sources, free-free, synchrotron, Sunyaev Zel'dovich from the Planck Sky Model
 - Main systematics effects: intermediate and far sidelobe, bandpass leakage, ...
- Widely used in Planck analyses, exploited in component separation used as most important diagnostics & validation, based on:
 - Overall study of separation performance by direct I/O comparisons
 - Propagation of CMB and noise realizations through pipelines, for assessing overall uncertainties on products,
 - Propagation of foregrounds templates through pipelines, for assessing foreground residuals,
- FFP8 exploited in Planck 2015, X, currently analysis is based on FFP10

I/O for Full Focal Plane Simulations: Q

Commander - input

NILC - input

I/O for Full Focal Plane Simulations: U

I/O for Full Focal Plane Simulations: T

planck

Planck 2015, IX

FFP diagnostics on outputs: E

see Graca's talk next

Planck 2015, X

FFP diagnostics on outputs: T

Planck 2015, X

Contamination to B-modes

- B-modes from diffuse Galactic emissions:
 - Status of normalization of the contamination
 - Preliminary results from S-PASS

Diffuse Galactic Contamination on B-modes

Diffuse Galactic Contamination on B-modes

Diffuse Synchrotron emission as CMB contaminant:

(Krachmalnicoff et al. in prep)

- Angular power spectra at different Galactic latitudes up to ell~500
- Contamination to CMB B-modes in small sky regions at high Galactic latitude
- Correlation with other data (WMAP-Planck): SED, spectral index variation, correlation with dust emission

Diffuse Galactic Contamination on B-modes

B-modes foreground estimates and cleaning

- See Errard's and Remazeilles's talks for simulations concerning design of forthcoming and long term probes
- Here we give examples of B-modes data analysis concerning the control of foregrounds:
 - Upper limits on PolarBear Fields
 - BICEP2 x Planck cleaning

Bibliography for B-mode Component Separation

- Maximum likeihood casting, Stompor et al. 2009
- Implementation, Leach e al., 2010
- Simulations of sub-orbitals, Stivoli et al. 2010
- Parameter estimation, Fantaye et al. 2011
- Power spectrum estimation through the Xpure code, Grain et al. 2012
- Foreground cleaning and lensing reconstruction, Fantaye et al. 2012
- Linearized system for forecasts, Errard and Stompor 2012
- Fisherization, Errard et al. 2016
- Control of Foreground biases at, Stompor et al. 2016

PolarBear Foreground Estimates

RA23 🗖

RA12

RA4.5

PolarBear Foreground Estimates

RA23

RA12

RA4.5

PolarBear Foreground Estimates

PolarBear Collaboration, 2017

B-mode foreground cleaning: Planck × Bicep2 × KEcK

BKP 2015

Conclusions

- Main foreground monitor in present constraints on B-modes
- Guidance for current design study of forthcoming and long term probes
- Planck component separation in polarization is presently noise dominated, hiding foreground biases and residuals which are visible in total intensity
- Large simulations are necessary, but not sufficient, to assess the level of residual contamination in foreground cleaned maps, likely to increase in importance for B-mode foreground cleaning
- B-mode foreground contamination unveiling the messages from polarized surveys in the radio band (S-PASS, C-BASS), which in combination with dust measurements reads:
 - Minimum r_{FG} at the 10⁻², larger than 10⁻³ everywhere
 - Flat prior on foreground minimum frequency between 60 and 90 GHz
- B-mode foreground cleaning driving instrumental configurations in simulations, ongoing applications to data concerning foreground upper limits, or cross-spectra based cleaning, dominating the present constraint on r