Reijo Keskitalo, LBL

Mitigating systematics by mapmaking

Extensions of the destriping principle

Definitions

- * *Mapmaking*: Projecting Time-Ordered Data (TOD) into maps.
- * *Destriping*: Solving and subtracting long and intermediate time scale (seconds to hours) noise fluctuations from the TOD.
- * *Filtering* or *deprojection*: Removing or suppressing modes in the TOD that are contaminated by systematics.
- * *Extended destriping*: Combines noise offsets with systematics templates to optimally clean the TOD.
- Systematics: Any component of the TOD that is not sky signal nor noise. The boundary between noise and systematics is fluid.

Linear regression

 Standard tool in data analysis toolbox that all mapmaking can be traced back to:

$$\vec{y} = X\vec{\beta} + \vec{\varepsilon}$$

Ordinary least squares:

$$(\mathbf{X}^{\mathrm{T}}\mathbf{X})\,\vec{\boldsymbol{\beta}} = \mathbf{X}^{\mathrm{T}}\vec{y}$$

* Generalized least squares:

$$(\mathbf{X}^{\mathrm{T}} \mathbf{\Omega}^{-1} \mathbf{X}) \, \vec{\beta} = \mathbf{X}^{\mathrm{T}} \mathbf{\Omega}^{-1} \vec{y}, \quad \mathbf{\Omega} = \langle \vec{\epsilon} \vec{\epsilon}^{\mathrm{T}} \rangle$$

Mapmaking

 Mapmaking can be cast as a linear regression problem where the pixel values are the template coefficients

$$\vec{d} = P\vec{m} + \vec{n}$$

 And the maximum likelihood map follows from generalized least squares:

$$(\mathbf{P}^{\mathrm{T}}\mathbf{N}^{-1}\mathbf{P})\,\vec{m} = \mathbf{P}^{\mathrm{T}}\mathbf{N}^{-1}\vec{d}, \quad \mathbf{N} = \langle \vec{n}\vec{n}^{\mathrm{T}} \rangle$$

Destriping

* Destriping adds another set of templates and template coefficients we call *baseline offsets*:

$$\vec{d} = \mathbf{P}\vec{m} + \mathbf{F}\vec{a} + \vec{n}$$

* If the residual noise is white, it is possible to solve exclusively for these additional templates: $(\mathbf{F}^{T}\mathbf{N}^{-1}\mathbf{Z}\mathbf{F})\vec{a} = \mathbf{F}^{T}\mathbf{N}^{-1}\mathbf{Z}\vec{d}$

where

Keihänen et al (2004, 2005, 2010)

 $\mathbf{Z} = \mathbf{I} - \mathbf{P} \left(\mathbf{P}^{\mathrm{T}} \mathbf{N}^{-1} \mathbf{P} \right)^{-1} \mathbf{P}^{\mathrm{T}} \mathbf{N}^{-1}$

6

Keihänen et al (2004, 2005, 2010)

Filtering

- Ground experiments typically *filter* or *deproject* compromised modes out of the TOD. This is pure linear regression.
- Filtering enables batch processing so only a fraction of the data are kept in memory at a time.
- Filtering suppresses signal and systematics alike and reduces S/N. Further analysis is complicated by introduced biases.

Extended destriping

 There is no formal restriction for the shape of destriping templates.

$$\vec{d} = \vec{P}\vec{m} + \vec{F}\vec{a} + \vec{n}$$

 A deprojection template makes a great destriping template!

$$\left(\mathbf{F}^{\mathrm{T}}\mathbf{N}^{-1}\mathbf{Z}\mathbf{F}\right)\vec{a} = \mathbf{F}^{\mathrm{T}}\mathbf{N}^{-1}\mathbf{Z}\vec{d}$$

Extended destriping (continued)

Systematics

- * Orbital dipole
- Gain fluctuations
- Bandpass mismatch
- Far side lobe pickup
- Transfer function residuals
- * Zodiacal light
- Crosstalk
- * Errors in pointing, beams and polarization efficiency
- HWP synchronous signal

To conclude

- * It is possible to *cast the mapmaking* problem in the very familiar *language of linear regression*.
- It is possible to *solve* for *general systematics* templates using the mapmaking formalism and *in map-orthogonal subspaces* of the full TOD domain.
- It is more than likely that extended mapmaking methods will couple with filtering to reach the ultimate sensitivity.

$$N_{pp'} = \langle \delta m \delta m^{T} \rangle = (P^{T} N^{-1} P)^{-1}$$

$$N_{aa'} = \langle \delta a \delta a^{T} \rangle = (F^{T} N^{-1} Z F)^{-1}$$

$$N_{pp'} = N_{pp'}^{wn} + N_{pp'}^{wn} P^{T} N^{-1} F N_{aa'} F^{T} N^{-1} P N_{pp'}^{wn}$$

$$Tristram et al (2011)$$

$$N_{pp'}^{tot} = N_{pp'} + B \mathscr{N} B^{T}$$

N

$$\mathcal{N} = \langle \delta y \delta y^{\mathrm{T}} \rangle, \quad \mathbf{B} = \left(\mathbf{P}^{\mathrm{T}} \mathbf{N}^{-1} \mathbf{P} \right)^{-1} \mathbf{P}^{\mathrm{T}} \mathbf{N}^{-1}$$