Lensing Reconstruction in the Presence of Diffuse Polarized Galactic Foregrounds

in prep.

Dominic Beck - AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité, France

Lensing Reconstruction

Using an optimally weighted quadratic combinations of CMB fields T, E or B [Okamoto&Hu 2003] to extract a biased estimate of the lensing potential

$$\hat{\phi}_{LM}^{XY} = \sum_{\ell m \ell' m'} W_{LM\ell m \ell' m'} \cdot X_{\ell m} Y_{\ell' m'} .$$

The bias in the resulting power spectrum is computed analytically $(N_L^{(0)} \otimes N_L^{(1)})$ and with MC simulations (small residual bias, not including foregrounds).

Polarized Diffuse Foregrounds

An understanding of the contaminating effect of small scale polarized galactic foregrounds on the lensing potential estimation and delensing is essential for B-mode detection. PLANCK provided data on degree-scale polarized foregrounds, understanding the small scale effect relies on simulations, with the main contributors believed to be polarized dust and synchrotron radiation.

Foreground Cleaning

Maximization of the spectral likelihood [Stompor et al. 2009]

 $-\log \mathcal{L} = (A^T N^{-1} d)^T (A^T N^{-1} A)^{-1} A^T N^{-1} d$

to determine the spectral parameters of the dust and synchrotron scaling relations in the data d. An estimate of the clean CMB is then given by

$$s = [(A^T N^{-1} A)^{-1} A^T N^{-1} d]_{CMB}$$

with a noise given by $[(A^T N^{-1} A)^{-1}]_{CMB \times CMB}.$

Foreground Residuals in $C_L^{\phi\phi}$

Fake total neutrino mass due to foregrounds

	Before cleaning	Aftercleaning
$\Sigma m_{ u}$	1.3 eV	230 meV
$\sigma(\sum m_{\nu})$	0.2 <i>eV</i>	90 meV

The above table is showing the mean and standard deviation of the best-fit values of the total neutrino mass, fitted to $C_L^{\phi\phi}$ as it is reconstructed from simulated, foreground cleaned CMB maps, including no massive neutrinos.

Frequency Dependent Foreground Bias

CMB Internal Delensing with Foregrounds

Gaussianities. In the 150 GHz×150 GHz reconstruction, the

smaller synchrotron foreground bias is shown as well.

The foreground biased estimate of ϕ can be used to delens the contaminated CMB, finding an improvement $\frac{\sigma_{del}(r)}{\sigma_{len}(r)} = 0.72$.

r/ 10 ⁻³	Lensed	Delensed	
No FGs	1 ± 0.92	1 ± 0.50	
FG residuals	15.4 <u>+</u> 1.21	17.9 ± 0.87	