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Interested in qualitative disagreements between 
AdS gravitational field theory and CFT.

Towards the Black Hole 
Information Paradox…

As CFT defines AdS, have two categories of problems:

Easier = unambiguous discrepancies 
in CFT observables

Hard = potentially ambiguous questions
about AdS observables (this talk)



Ultimate Goal:  
The Paradox

Hawking Radiation

vs

Unitary CFT

Tension between local bulk effective field theory
and unitarity of exact definition via CFT.

Resolve by understanding non-perturbative effects.



“Hard” = Ambiguous (?)  
Problems

I. Is bulk reconstruction well-defined?  What 
are the quantitative limitations on local 

observables in quantum gravity?

II. Eventually… what do observers see near 
and across black hole horizons?

?!



The Reconstruction Problem
Given a CFT… 

Is there an exact prescription for local field operators      
in a dual AdS spacetime?  It should:

1. specify where in the bulk the field is located 
2. match bulk perturbation theory about any        

semiclassical gravitational background
3. make quantitative predictions about its own 

regime of validity (if locality breaks down)



Plan for the Talk
We will show that we can solve the problem

using Virasoro symmetry in                     . 
Result is an exact bulk “proto-field”.

AdS3/CFT2

We’ll compute its propagator and discover 
non-perturbative gravity effects that indicate 

the breakdown of bulk locality.

Equivalent to a free field coupled to gravity.



Let’s Solve a 
Warm-up Problem: 
Reconstruction 
Without Gravity



Bulk Reconstruction  
Without Gravity

We work in the Euclidean AdS metric

ds2 =
dy2 + dzdz̄

y2

mimicking BOE.  Demand that conformal 
symmetries act as AdS isometries on the scalar field:

where we define f via hO(x)O(z)T (z
1

) · · ·T (zn)i = f(zi, x, z)(z̄ � x̄)�2h, so we have

h�g(y)O(z)T (z
1

) · · ·T (zn)i = y2h
⌧

O
✓

�y2

z̄

◆

O(z)T (z
1

) · · ·T (zn)
�

(A.15)

The simple special case of interest to us is

h�g(y, 0, 0)O(z, z̄)i =
✓

y

y2 + zz̄

◆

2h

(A.16)

as expected.

A.3.3 Symmetries of the Global Boundary Operator Expansion

In this section we will show that global conformal symmetry transformations L�1

, L
0

, L
1

act as expected on the global conformally reconstructed �.

When we regard � as a bulk field, the global conformal generators should act on it

as the di↵erential operators

L�1

= @z

L
0

= z@z +
1

2
y@y

L
1

= z2@z + zy@y � y2@z̄ (A.17)

So the goal is to show that when the quantum operators Ln act on equation (A.9) in

accord with this expectation. In what follows, we will show that an Ln transformation

applied to O results in the appropriate di↵erential operator acting on �.

The fact that the translation generators act correctly follows easily because @z
commutes with (y2@@̄)n. For the dilatation L

0

note that

��g = y2h
1
X

n=0

�ny
2n(@@̄)n (z@ + h)O(z, z̄)

= (z@ + h)�g + y2h
1
X

n=0

n�ny
2n(@@̄)nO(z, z̄)

=

✓

z@ +
1

2
y@y

◆

�g (A.18)

as desired. Note that this is automatic given the structure of expansion, and it does

not depend on the form �n = (�1)

n

n!(2h)n
.

– 29 –

Write our scalar field as a sum over descendants

�(y, 0, 0) =
X

N

�Ny2h+2NLN
�1L̄

N
�1O(0)

=) �N =
(�1)N

N !(2h)N



Bulk Reconstruction  
Without Gravity

Equivalently…  simplest AdS/CFT observable of all:

�(y, 0, 0)

O(z)

But this correlator immediately
defines the components of the field 

involving       and global descendants.O

Just expand the correlator in the bulk radial direction
and match coefficients, as with the OPE.

h�(X)O(z)i = y2h

(y2 + zz̄)2h



Lessons
Symmetries can directly determine bulk proto-fields…

or

We can define the bulk field using radial quantization 
if we know bulk-boundary correlators.

Note that we’ve defined a proto-field.  Full fields are
a linear combination of these primitive objects:

�(X) =
X

↵

↵�↵(X)



Gravitational 
Proto-Fields 

from Virasoro



In AdS/CFT we interpret: gµ⌫(X) $ Tµ⌫(x)

T (z) =
X

n

z�2�nLnand in 2d CFTs:

Virasoro blocks know about gravity, e.g.

Virasoro and Quantum Gravity

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

TH =
1

2⇡

r
24

hH

c
� 1with

We will use Virasoro to define bulk proto-fields…
both methods from the warm-up can be generalized.



Proto-Fields  
from Symmetry

In                       Virasoro acts as asymptotic symmetry.AdS3/CFT2

But this only identifies Virasoro transformations
with an equivalence class of diffeomorphisms.

However, if we fix a gauge = coordinate system:

then the asymptotic symmetries are fixed to be
diffeomorphisms that preserve this gauge choice.

ds2 =
dy2 + dzdz̄

y2
� S(z)

2
dz2 � S̄(z̄)

2
dz̄2 + y2

S(z)S̄(z̄)

4
dzdz̄



Proto-Fields  
from Symmetry

our � will reduce to �global, as will be shown in 3.2.2 that the terms in the parenthesis

are suppressed at large c.

Now let us explain why the conditions (3.3) uniquely determine L�N . It is easy to

see that they are equivalent to the equations

Lm1 · · ·Lmi
|�iN = 0,

X

i

mi = N (3.8)

(and similarly for the anti-holomorphic part) where Lm1 · · ·Lmi
represents the set of

all level N products of Virasoro generators with at least one Lmi
with mi � 2. That

is, Lm1 · · ·Lmi
does not include LN

1

. These conditions say that when Lm1 · · ·Lmi

decreases the level of |�iN back to level zero, the result vanishes. There are p (N) � 1

independent ways (because we exclude LN
1

) to lower |�iN to level zero, and thus |�iN
must satisfy p (N) � 1 constraint equations. Since all the level N descendants of |Oi
form a p (N) dimensional space, the above condition will fix the bulk field up to an

overall constant. So � (y, 0, 0) will be uniquely fixed by the constraints (3.3) and the

normalization condition (3.5).

In section 3.1 we motivate the definition of � using Virasoro symmetry and the

fact that � is a bulk scalar field. We then solve these conditions in various cases in

section 3.2. In section 3.3, we show that our definition of �(y, 0, 0) leads to a powerful

recursive algorithm to compute correlators of the form of equation (1.2), extending

standard recursion relations for correlators of stress tensors with local CFT
2

primary

operators. The results exactly agree with those obtained from the bulk-boundary OPE

block in section 2.

3.1 Virasoro Transformations of �(X)

In this section we will derive (3.1) using the fact that � must transform as a bulk scalar.

This means that under a coordinate transformation, �(z, z̄, y) ! �(z0, z̄0, y0).
We would like to understand the transformation of � under the action of Virasoro,

which is defined on the boundary by (z, z̄) ! (g(z), ḡ(z̄)). We will constructively

demonstrate that there is a unique extension of an infinitesimal boundary Virasoro

transformation preserving the Fe↵erman-Graham gauge. Infinitesimally, we have

✏Lm(y, z, z̄, S, S̄) ⌘ ✏(�my, �mz, �mz̄, �mS, �mS̄). (3.9)

where S, S̄ parameterizes the metric and are defined in (2.10). Then the transformation

of � under an infinitesimal Virasoro generator Lm is determined by its scalar property:

Lm�(z, z̄, y) = (�my@y + �mz@ + �mz̄@̄)�(z, z̄, y) (3.10)
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We found the transformation rules in our metric

with
This transformation rule is expected to hold within correlation functions.

We work out the gauge preserving extension of Lm in Appendix C, with the result

�my =
1

2
(m+ 1)yzm (3.11)

�mz =
zm�1

�

(m2 +m+ z2S(z)) S̄ (z̄) y4 � 4z2
�

y4S(z)S̄ (z̄) � 4
(3.12)

�mz̄ =
2m(m+ 1)y2zm�1

y4S(z)S̄ (z̄) � 4
(3.13)

We have verified that these results agree with the action of Lm computed using contour

integrals [16] of the stress tensor correlators from section 2.3. These results have several

notable features. First, they reduce to the expected form of a Virasoro transformation

on the boundary:

lim
y!0

(�my, �mz, �mz̄) = (0, zm+1, 0). (3.14)

Secondly, the transformation on the coordinates depends on the starting metric through

(S, S̄). This fact is easy to understand because if no such dependency existed, then we

would not be able preserve the Fe↵erman-Graham form of the metric in general.

The central feature of these transformations is that for m � 2, points on the line

(y, 0, 0) are left invariant:

�m(y, 0, 0) = 0 for m � 2. (3.15)

Using the scalar property (3.10), we find that

Lm�(y, 0, 0)|0i = 0, for m � 2. (3.16)

Including the constraints from L̄m̄, we arrive at conditions (3.1) satisfied by �(y, 0, 0).

One can also motivate the conditions (3.1) satisfied by �(y, 0, 0) by consideration

of causality [13–15, 23]. Correlators of �(y, 0, 0) with boundary stress tensors T (z)

necessarily have singularities of the form 1

z2
, as the stress tensor must be sensitive to

the energy-momentum ‘charge’ of the bulk field, as well as 1

z3
singularities, since special

conformal transformations move � around in the bulk.10 However, one may wish to

forbid branch cuts and higher order singularities such as 1

zn
with n � 4. Our �(y, 0, 0)

is constructed to satisfy these requirements. The conditions on � are equivalent to

10These singularities could move to a di↵erent location in a di↵erent gauge, but they cannot be
eliminated entirely [14].
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Notice that all vanish for              as           .m � 2 z ! 0

doesn’t move the origin, even in the bulk!Lm�2



Bulk Primary Condition

Each operator �N(z, z̄) can be defined by first translating z ! 0 and then applying the

operator/state correspondence to study the state |�iN = �N(0, 0)|0i. These states are

then defined by the bulk primary conditions

Lm |�iN = 0, Lm |�iN = 0, for m � 2. (2.3)

along with a normalization condition

LN
1

L
N

1

|�iN = (�1)N N ! (2h)N |Oi (2.4)

These conditions have a unique solution [1]. This solution can be conveniently written

�(y, 0, 0) =
X

N

y2h+2N�NLN L̄NO(0) (2.5)

where �N ⌘ (�1)

N

(2h)NN !

and the LN are a certain linear combination of holomorphic Vira-

soro generators2 at level N , and similarly for the anti-holomorphic L̄N . When c ! 1
with other parameters held fixed, our prescription reduces to the definition of � that

can be obtained from the ‘HKLL kernel’ [8–10], and LN ! LN
�1

.

This prescription for � can be motivated in a number of ways; for details see [1].

When Virasoro transformations are realized as bulk di↵eomorphisms preserving the

gauge choice in equation (2.1), our definition emerges by demanding that �(y, z, z̄)

transform as a bulk scalar field. Alternatively, one can arrive at our prescription by

studying correlators of � with O(x) and any number of stress tensors T (zi) and T̄ (z̄i).

After gauge fixing, Virasoro symmetry appears to determine these correlators exactly

[1, 11], and their specification is equivalent to our definition of �. In more conventional

terms, our definition of � should agree with bulk gravitational perturbation theory to

all orders in GN = 3

2c
, and this has been verified explicitly to order 1/c3.

Solution for � Using Quasi-Primaries

For various purposes it is useful to solve for �N explicitly in terms of quasi-primary

states, which are annihilated by L
1

but not Lm. Importantly, we will take the quasi-

primaries to be orthogonal, and we fix their overall normalizationby demanding that a

level M quasi-primary includes the term LM
�1

with overall coe�cient 1. In this basis,

2For example, the explicit solution at level 2 is

L�2 =
(2h+ 1)(c+ 8h)

(2h+ 1) c+ 2h(8h� 5)

✓
L2
�1 �

12h

c+ 8h
L�2

◆
(2.6)

with L̄�2 only di↵ering by L�n ! L̄�n.
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with “bulk primary” condition

In our gauge, all             preserve the origin, 
even in the bulk.  This leads to a definition:

Lm�2

These reduce to the expected OO correlators as y ! 0.

We should also emphasize that in the semiclassical limit, where we include sources

with dimensions hH / c as c ! 1, the correlators of � will take the correct form. This

follows automatically from the definition of the OPE block in equation (2.4) and the

form of the vacuum metric in equation (2.3). We can compute correlators in a BTZ

black hole background when we include a heavy operators OH(1)OH(0), which lead

to 1

c
hT (z)i = hH

c
1

z2
in the semiclassical limit. We hope to study these correlators at a

non-perturbative level in the future.

3 An Exact Algebraic Definition for the Proto-Field �(X)

Our regulated bulk-boundary OPE block computes vacuum sector correlators exactly,

and this suggests that we can obtain an exact definition for the proto-field � built from

the Virasoro primary O. Now we provide this definition in a simple algebraic form,

which originates from symmetry considerations. Our �(y, 0, 0) will satisfy

Lm�(y, 0, 0)|0i = 0, L̄m�(y, 0, 0)|0i = 0, m � 2. (3.1)

This follows from the fact that � is a scalar and the bulk points (y, 0, 0) are invariant

under bulk Virasoro transformations generated by Lm with m � 2. We explain this in

detail in section 3.1 and appendix C.

In the following discussion, we will write � (y, 0, 0) as an expansion in small y or

the boundary OPE expansion (BOE)7

� (y, 0, 0) |0i =
1
X

N=0

y2h+2N |�iN (3.2)

where |�iN is a level N Virasoro descendant of O in both holomorphic and anti-

holomorphic sectors, since we are defining the proto-field � to be made of O and its

descendants.8 Then the conditions (3.1) for � (y, 0, 0) will be equivalent to saying that

7In the conventional BCFT case, the bulk theory is a CFT (see [35] for a nice discussion). An
identical expansion also applies when studying non-gravitational QFTs in AdS [29], because boundary
dilatations correspond to a bulk isometry. When the bulk theory is gravitational, one cannot use pure
symmetry or OPE type arguments to prove that this expansion converges, but our results suggest that
it can be determined exactly to all orders in y after bulk gauge fixing. It seems reasonable to expect
that the small y expansion of � would have a finite radius of convergence, since no terms like ⇠ e�1/y

are allowed by scaling symmetry. We also explain in appendix A.3 that symmetry arguments dictate
this global conformal BOE result [4, 29]

8More generally, a full bulk field would have terms like yh

0
+

¯

h

0 |O
h

0
,

¯

h

0i, where O
h

0
,

¯

h

0 is not a descen-
dant of O.
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We also normalize our proto-field so we recover

|�iN satisfies the following ‘bulk primary’ conditions:

Lm |�iN = 0, Lm |�iN = 0, for m � 2. (3.3)

That is, � (y, 0, 0) will be a sum over these operators �N of di↵erent levels. The |�iN is,

in a sense, as close as possible to being a primary itself while still living in the bulk (ie

it is a primary that is not quasi-primary). It is an eigenstate of L
0

and is annihilated

by all higher generators except L
1

. We will say more about the non-trivial action of L
1

in appendix C.

In particular, the conditions (3.3) imply that at each level, |�iN factorizes, and can

be written in the following form

|�iN = �NL�NL�N |Oi, �N =
(�1)N

N ! (2h)N
. (3.4)

where L�N (and L�N) are linear combinations of products of holomorphic (and anti-

holmorphic) Virasoro generators at level N . Note that, the holomorphic and anti-

holomorphic conditions above are independent, which means that L�N will just be

L�N with L replaced by L.

The conditions (3.3) will uniquely determine |�iN (or L�N ) up to an overall nor-

malization (will be explained below). The overall normalization of |�iN is fixed by

LN
1

L
N

1

|�iN = (�1)N N ! (2h)N |Oi . (3.5)

This normalization condition is based on the requirement that we correctly reproduce

the vacuum correlator h�Oi,that is, h�(y, 0, 0)O(z, z̄)i = h�globalOi =
⇣

y
y2+zz̄

⌘

2h

. �global

here is the global bulk field in the HKLL reconstruction [2], which we explain in A.3 is

equivalent to

�global (y, 0, 0) |0i =
1
X

N=0

y2h+2N�NL
N
�1

L
N

�1

|Oi . (3.6)

So the requirement that h�Oi = h�globalOi implies that

L�N |Oi = LN
�1

|Oi + (other quasi-primaries and their descendants) (3.7)

where the terms in the parenthesis are all orthogonal to O and its global descendants,

and will not contribute when computing h�Oi. They are then fixed by solving (3.3).

When acting on |�iN with LN
1

L̄N
1

, the terms in the parenthesis will be killed, that’s

why we have the normalization condition (3.5).9 It’s also true that in the large c limit,

9Specifically, LN

1

L̄N

1

|�i
N

= LN

1

L̄N

1

|�globali = �
N

LN

1

L̄N

1

LN

�1

L̄N

�1

|Oi = (�1)NN !(2h)
N

|Oi.
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in the infinite central charge limit.  These conditions 
uniquely determine the proto-field in our gauge!



Algebraic Conditions for 
the Bulk Proto-Field

Each operator �N(z, z̄) can be defined by first translating z ! 0 and then applying the

operator/state correspondence to study the state |�iN = �N(0, 0)|0i. These states are

then defined by the bulk primary conditions

Lm |�iN = 0, Lm |�iN = 0, for m � 2. (2.3)

along with a normalization condition

LN
1

L
N

1

|�iN = (�1)N N ! (2h)N |Oi (2.4)

These conditions have a unique solution [1]. This solution can be conveniently written

�(y, 0, 0) =
X

N

y2h+2N�NLN L̄NO(0) (2.5)

where �N ⌘ (�1)

N

(2h)NN !

and the LN are a certain linear combination of holomorphic Vira-

soro generators2 at level N , and similarly for the anti-holomorphic L̄N . When c ! 1
with other parameters held fixed, our prescription reduces to the definition of � that

can be obtained from the ‘HKLL kernel’ [8–10], and LN ! LN
�1

.

This prescription for � can be motivated in a number of ways; for details see [1].

When Virasoro transformations are realized as bulk di↵eomorphisms preserving the

gauge choice in equation (2.1), our definition emerges by demanding that �(y, z, z̄)

transform as a bulk scalar field. Alternatively, one can arrive at our prescription by

studying correlators of � with O(x) and any number of stress tensors T (zi) and T̄ (z̄i).

After gauge fixing, Virasoro symmetry appears to determine these correlators exactly

[1, 11], and their specification is equivalent to our definition of �. In more conventional

terms, our definition of � should agree with bulk gravitational perturbation theory to

all orders in GN = 3

2c
, and this has been verified explicitly to order 1/c3.

Solution for � Using Quasi-Primaries

For various purposes it is useful to solve for �N explicitly in terms of quasi-primary

states, which are annihilated by L
1

but not Lm. Importantly, we will take the quasi-

primaries to be orthogonal, and we fix their overall normalizationby demanding that a

level M quasi-primary includes the term LM
�1

with overall coe�cient 1. In this basis,

2For example, the explicit solution at level 2 is

L�2 =
(2h+ 1)(c+ 8h)

(2h+ 1) c+ 2h(8h� 5)

✓
L2
�1 �

12h

c+ 8h
L�2

◆
(2.6)

with L̄�2 only di↵ering by L�n ! L̄�n.
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One can solve explicitly at finite order, for example

stipulating that the singular terms in the OPE of the stress energy tensor T (z) with

�(y, 0, 0) are

T (z)� (y, 0, 0) ⇠ L�1

� (y, 0, 0)

z
+

L
0

� (y, 0, 0)

z2
+

L
1

� (y, 0, 0)

z3
. (3.17)

So there will be no higher order singularities in correlators of � with any number of

T . This property also holds for the individual components �N . One can also see this

explicitly in the correlators h�OT i, h�OTT i, and h�OT T̄ i that we computed using

bulk-boundary OPE blocks in section 2.3, where there are no singularities beyond 1

z3
,

including in the expansions of these expressions in y.

3.2 Solving for �(X) Explicitly

In this section, we will solve the conditions (3.3) and the normalization condition (3.5)

for �(y, 0, 0) explicitly. We will focus on the holomorphic part of |�iN = �NL�N L̄�N |Oi
and solve for L�N , since L̄�N is just the anti-holomorphic conjugate. In terms of L�N ,

the conditions are

LmL�N |Oi = 0, for 2  m  N (3.18)

LN
1

L�N |Oi = N !(2h)N |Oi (3.19)

We first provide an example at low orders in section 3.2.1 , and then we obtain an

exact, all orders solution in terms of orthogonal quasi-primaries in 3.2.2. We also solve

these conditions in the large c limit up to order O(c�2) in appendix D.5.3.

3.2.1 Explicit Solutions at Low Orders

It is obvious that |�i
0

= |Oi and |�i
1

= � 1

2h
L�1

L̄�1

|Oi, and so the first non-trivial case

arises at the next level. At level 2, an arbitrary L�2

is given by L�2

= b
1

L2

�1

+ b
2

L�2

and the conditions are

L
2

�

b
1

L2

�1

+ b
2

L�2

� |Oi = 0, (3.20)

L2

1

�

b
1

L2

�1

+ b
2

L�2

� |Oi = 2!(2h)
2

|Oi . (3.21)

Solving these two equations for b
1

and b
2

, we find

L�2

=
(2h+ 1)(c+ 8h)

(2h+ 1) c+ 2h(8h � 5)

✓

L2

�1

� 12h

c+ 8h
L�2

◆

(3.22)

and |�i
2

is given by |�i
2

= �
2

L�2

L̄�2

|Oi. One can continue this process at higher orders

(we also computed |�i
3

and |�i
4

in Appendix D.5.1.), although the explicit expressions

become rather complicated. Instead we will see how to solve these equations in general

in terms of quasi-primaries.

– 17 –

in our expression

So this is an exact function of primary 
operator dimension and central charge.

We can explore non-perturbative gravity effects.



Proto-Field from 
Correlators

Specification of the proto-field is equivalent to all

�(y, 0, 0)

O(z)

T (z1) · · ·T (zn)

T̄
(w̄
1
) ·
· · T̄

(w̄
n
)

1 Introduction

To resolve the black hole information paradox in AdS/CFT, we must understand how

to describe local AdS dynamics in terms of CFT data and observables. Unfortunately,

bulk gauge redundancies could render AdS reconstruction ambiguous, and the existence

of black holes at high-energies suggests that local physics may not be well-defined. We

will argue that the Virasoro symmetry of CFT
2

provides a sort of beachhead into AdS
3

,

making it possible to exactly define a bulk ‘proto-field’ � as a specific linear combination

of Virasoro descendants of a given local primary operator O.

The simplest AdS/CFT observable is the vacuum bulk-boundary correlator

h�(X)O(P )i = 1

(P · X)�
, (1.1)

which is determined by conformal symmetry up to an overall constant. From this

correlator alone one can derive a formula for a proto-field �(X) as a linear combina-

tion of global conformal descendants of the primary operator O [1–4]. At this level,

bulk reconstruction is purely kinematical, following entirely from the assumption that

conformal transformations act on � as AdS isometries.

In the case of AdS
3

/CFT
2

, Virasoro conformal transformations act as asymptotic

symmetries. So it is natural to expect that the bulk-boundary correlator should be

uniquely determined in any geometry that can be related to the vacuum by a Virasoro

symmetry. In rather di↵erent words, we expect that all correlators of the form

h�(X)O(z, z̄)T (z
1

) · · ·T (zn)T̄ (w̄1

) · · · T̄ (w̄m)i (1.2)

can be determined by symmetry once we fix a gauge for the bulk gravitational field.

This leads to a unique expression for a Virasoro proto-field operator �(X) as a linear

combination of Virasoro descendants of the CFT
2

primary O. These proto-field opera-

tors will automatically ‘know’ about the bulk geometry associated with heavy distant

sources, meaning that they perform bulk reconstruction at an operator level. In this

paper we will explain how to identify and explicitly compute �(X) as a CFT
2

operator.

We will be led to the potentially surprising conclusion that an exact (non-perturbative

in c) condition uniquely determines � in our Fe↵erman-Graham type gauge.

We will determine �(X) in two distinct but ultimately equivalent ways. The first

is based on an extension of gravitational Wilson lines [5–11] as OPE blocks [12]. We

will introduce a ‘bulk-boundary OPE block’ that encapsulates the projection of the
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as we can just decompose into descendants of O
Compute correlators and verify?



Bulk-Boundary  
OPE Block
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Figure 1. This figure portrays a bulk-boundary OPE block used to compute the correlator

(1.2). The red line denotes the gravitational or Chern-Simons Wilson line, while the blue circle

suggests radial quantization around the block, so that it creates a definite linear combination

of Virasoro descendants of the identity. The explicit computation involves line integrals over

stress tensor correlators.

Note that we have already identified the contribution of the identity operator in equa-

tion (2.1) as the vacuum correlator h�Oi, which is fixed by conformal symmetry. All

of the remaining terms in equation (2.1) would be fixed if we knew all correlators of

the form (1.2), because the Virasoro generators are just the modes in an expansion of

the stress tensors T (z) and T̄ (z̄).

Building on prior work [10], we will make the following proposal for the �O OPE

block. The general asymptotically AdS
3

vacuum metric can be written as [33, 34]

ds2 =
dy2 + dzdz̄

y2
� 6T (z)

c
dz2 � 6T̄ (z̄)

c
dz̄2 + y2

36T (z)T̄ (z̄)

c2
dzd̄z (2.3)

This amounts to a choice of gauge for the bulk gravitational field. Normally the objects

T (z) and T̄ (z̄) appearing in this equation are viewed as classical functions, but let us

instead view them as CFT
2

stress tensor operators. We define the bulk-boundary

OPE block as the operator defined by the propagation of a (quantum, first-quantized)

particle from the location of O on the boundary to that of � in the bulk. Formally,

this means that the bulk-boundary OPE block can be thought of as a world-line path

integral

�(X)O(0)|
vac

=

Z

DY (⌧) e�m
RX
0 d⌧

p
gµ⌫ ˙Y µ

˙Y ⌫
, (2.4)
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Can simply use the 1st quantized description

where we interpret          in the metricT (z)
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as a quantum CFT stress tensor operator.

This is what guarantees that our operator has 
correct correlators in any vacuum geometry, 

including e.g. BTZ black hole geometries.



Example Correlator and 
Algebraic Conditions

The simplest non-trivial correlator is
Since h�Oi is simply given by the first term in equation (2.14), ie h�(y, 0, 0)O(z, z̄)i =

⇣

y
y2+zz̄

⌘

2h

, the simplest non-trivial correlator is h�OT i. It can be computed using

(2.15), giving

h�(y, 0, 0)O(z, z̄)T (z
1

)i
h�(y, 0, 0)O(z, z̄)i = hKTT (z1)i =

12h

c

Z z

0

dz0
2(z � z0)(y2 + z0z̄)

y2 + zz̄

c

2(z0 � z
1

)4

=
hz2

z3
1

(z
1

� z)2

✓

z
1

+
2y2(z

1

� z)

y2 + zz̄

◆

(2.30)

The computation is suggested pictorially in figure 1. This result matches bulk gravita-

tional perturbation theory using AdS
3

Feynman diagrams in our chosen gauge, as we

show explicitly in appendix D.4. This is no surprise, as the definition in equation (2.4)

essentially reproduces gravitational perturbation theory in a first quantized language.

Naively, one might expect that this is only the first term in an infinite perturbation

series for this correlation function. However, the higher order contributions need to

be regulated in a way that is consistent with Virasoro symmetry and with the fixed

dimension 2h for the scalar CFT operator O. In the context of Chern-Simons Wilson

lines, we proposed a prescription for regulating multi-T correlators in Appendix C.2 of

[10] that produces the correct Virasoro OPE blocks. In appendix B, we argue that this

regulator can be derived from the generating function of multi-T correlators. Applying

this same regulator for the bulk-boundary OPE block, we find that all higher order

contributions to h�OT i vanish. Thus we claim that equation (2.30) is the exact result

for this correlation function. We will provide another argument that equation (2.30) is

exact in section 3.
We can also compute the correlators h�OTT i and h�OT T̄ i. We provide details of

the computations in appendix D.2. The results are that

h� (y, 0, 0) O (z, z) T (z
1

) T (z
2

)i
h� (y, 0, 0) O (z, z)i

=
c

2 (z
1

� z
2

)4
+

h2z4

�

z
1

zz̄ + y2 (3z
1

� 2z)
� �

z
2

zz̄ + y2 (3z
2

� 2z)
�

z3

1

z3

2

(z � z
1

) 2 (z � z
2

)2 (zz̄ + y2)2
(2.31)

+
2hz2

⇣

y2zz̄z
1

z
2

(z (z
1

+ z
2

) � 4z
1

z
2

) � z2z̄2z2

1

z2

2

+ y4

⇣

zz
1

z
2

(z
1

+ z
2

) � 3z2

1

z2

2

� z2 (z
1

� z
2

)2
⌘⌘

(z � z
1

) (z
2

� z) z3

1

z3

2

(z
2

� z
1

) 2 (zz̄ + y2)2

and
⌦

� (y, 0, 0) O (z, z) T (z
1

) T (w
1

)
↵

h� (y, 0, 0) O (z, z)i (2.32)

=
h2z2z̄2

�

y2 (3w̄
1

� 2z̄) + w̄
1

zz̄
� �

y2 (3z
1

� 2z) + z
1

zz̄
�

z3
1

w3

1

(z
1

� z) 2 (w
1

� z̄)2 (zz̄ + y2)2
+

2hy2z3z̄3

z3
1

w̄3

1

(z � z
1

) (w̄
1

� z̄) (zz̄ + y2)2
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Since h�Oi is simply given by the first term in equation (2.14), ie h�(y, 0, 0)O(z, z̄)i =
⇣
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y2+zz̄
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The computation is suggested pictorially in figure 1. This result matches bulk gravita-

tional perturbation theory using AdS
3

Feynman diagrams in our chosen gauge, as we

show explicitly in appendix D.4. This is no surprise, as the definition in equation (2.4)

essentially reproduces gravitational perturbation theory in a first quantized language.

Naively, one might expect that this is only the first term in an infinite perturbation

series for this correlation function. However, the higher order contributions need to

be regulated in a way that is consistent with Virasoro symmetry and with the fixed

dimension 2h for the scalar CFT operator O. In the context of Chern-Simons Wilson

lines, we proposed a prescription for regulating multi-T correlators in Appendix C.2 of

[10] that produces the correct Virasoro OPE blocks. In appendix B, we argue that this

regulator can be derived from the generating function of multi-T correlators. Applying

this same regulator for the bulk-boundary OPE block, we find that all higher order

contributions to h�OT i vanish. Thus we claim that equation (2.30) is the exact result

for this correlation function. We will provide another argument that equation (2.30) is

exact in section 3.
We can also compute the correlators h�OTT i and h�OT T̄ i. We provide details of

the computations in appendix D.2. The results are that

h� (y, 0, 0) O (z, z) T (z
1

) T (z
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⇣
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Pole at origin indicates presence of bulk field,
but most singular term        .  This is direct 
confirmation of our algebraic condition:

z�3
1

Lm�2�(y, 0, 0)|0i = 0

We also derived a recursion relation for adding
stress tensors, generalizing Virasoro Ward identity.



The Exact 
Propagator 
and the Fate  

of Bulk Locality



Exact Propagator
We can now study the simplest local bulk observable

h�(X)�(Y )i

Because proto-field has a simple algebraic
definition based on Virasoro, we can adapt many

techniques from the study of Virasoro blocks
and apply them to compute the propagator
to very high precision in various limits…

It should be real, as quanta cannot decay,
and non-singular at spacelike separation.



Propagator Kinematics
Some useful kinematic variables for h�(X)�(Y )i

⇢ ⌘ e�2�(X,Y )

�(X,Y ) is geodesic distance

We will often use long-distance expansion in

Our gauge choice made the radial direction special, 
with the consequence that the full propagator is 

not spherically symmetric!  So propagator can also
depend on angle with radial direction.

For simplicity we will focus on the            plane. (z, z̄)



Semiclassical Limit

In the semiclassical limit of large central charge:

h��i ⇡ ec g(
h
c ,⇢)

and we can compute the exponent via a generalization
of the ‘monodromy method’.  For example:

h��i ⇡ ⇢h

1� ⇢
e

12h2

c

⇣
⇢

(1�⇢)2
+log(1�⇢)

⌘
+O

⇣
h3

c2

⌘

But really this is useful non-perturbatively…



Limit of Large Mass 
for the Bulk Field

We can compute at large dimension    ,
corresponding to trans-Planckian bulk mass:

We can now take the exact result and look at the di↵erence between its log and the above

expression, in the limit that h ! 1. We find (switching back to ⇢)

lim
h!1

(logh��i � gc!c�a) = ⇢+
1

32
(241� 9a)⇢2 +

1

9
(659� 32a)⇢3 +

(803155� 44163a)⇢4

1024

+

✓

44383

5
� 2622a

5

◆

⇢5 +O
�

⇢6
�

(17.207)

We have allowed a constant shift a of c in our function g, motivated by the simple shift

c ! c� 1 in the large � limit of the blocks. The above expression is just a function of q,

independence of c and h in this limit, as it must be. However, it is not reproduced just by

a shift in c of the semiclassical large h result, unfortunately.

However, in a sense c shows up in three di↵erent places in the above formula for g, and

we could make a more general Ansatz that c shifts by a di↵erent value in all three places.

Allowing such shifts, we have three variables and a large number of constraints (we have

computed up to s12), and we find that this does work! Explicitly, the h ! 1 limit is given

by

lim
h!1

logh��i =

✓

h� c� 1

24

◆✓

2⇡
E(1� s)�K(1� s)

E(s)
� x0

◆

+
(c� 13) log (s12(1� s)2�36)� (28c� 76) log 2E(s)

⇡

144
+ log

⇣s

8

⌘

(17.208)

Equivalently but somewhat more compactly,

lim
h!1

h��i = qh�
c�1
24

⇣s

8

⌘

c�1
12

(1� s)
c�13
144

✓

2E(s)

⇡

◆

19�7c
36

, q ⌘ 4e2⇡
E(1�s)�K(1�s)

E(s) �4, s ⌘ 4⇠

1 + 2⇠

(17.209)

At c = 1, this simplifies to

lim
h!1

h��i c=1
= qh(1� s)�

1
12

✓

2E(s)

⇡

◆

1
3

(17.210)

17.9 h Recursion Relation

Having found the h = 1 piece, we can factor it out and develop a recursion relation based

on the residues of the poles in h at h = hm,n(b) =
b2(1�m2)

4
+ (1�n2)

4b2 + 1�mn
2

:

h��i = qh�
c�1
24

⇣s

8

⌘

c�1
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(1� s)
c�13
144

✓

2E(s)
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◆

19�7c
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H(h, b, q)
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with

s =
8
p
⇢

⇢+ 4
p
⇢+ 1

and

This result is interesting for two reasons…

h



1) It’s a seed for a generalization of the Zamolodchikov 
recursion relations for the exact propagator.

2) The new      variable has a branch cut starting at

⇢ = 7� 4
p
3 ⇡ 0.0718

q

which corresponds to a physical separation of
�⇤

RAdS
⇡ 1.32

Violates unitarity, as our proto-field cannot decay.
So locality has broken down at the AdS scale.

Limit of Large Mass 
for the Bulk Field



Propagator for 
Fields with Small 

Bulk Masses…



Perturbation Theory in 
Central Charge

Let’s look at first perturbative correction.
In the short-distance limit, restoring scales

h��i ⇡ 1

�

✓
3GNR3

4�4
� GNR(10 +m2R2

)

8�2
+ 2GNm2R log

⇣ �

R

⌘◆

A new length scale has emerged:

This should certainly surprise field theorists…
indicative of UV/IR mixing and absence of 

a good flat space limit.  But it’s finite in AdS.

�⇤ ⇠ 4
p

GNR3

X1 X2Y1 Y2

AdS3



Non-Perturbative  
Fate of Locality…

Let’s study the propagator to all orders
and focus on the short distance limit.

We find a divergent expansion at short distances:

h�(X)�(Y )i ⇡
X

n

(4n� 1)!!

n!

✓
12

c�4

◆n

This can be Borel resummed, but there is a branch
cut on the positive real axis.  Ambiguous, and 

generically the resummation has imaginary piece.
But we can do better via numerics…



Zamolodchikov  
Recursion Relations

Algebraic simplicity of the bulk primary propagator
means it has much in common with Virasoro blocks.

Can also define an exact recursion relation for it.

Organizes the result as an expansion:

Recall that this is a long-distance expansion as

h��i = ⇢h

1� ⇢

X

n

an⇢
n

⇢ ⌘ e�2�(X,Y )



Numerical Results

We have the exact coefficients in a       expansion.⇢n

This expansion diverges at                      which 
can be determined by coefficient growth rates:

⇢⇤ ⌘ e�2�⇤

� ��� ��� ��� ������

���

���

���

���

���

�

������+�
��

�

Figure 3. This figure displays fits to logarithms of ratios of successive coe�cients in the ⇢

expansion of equation (6.1) up to the 400th order. In all cases we have set h = 0 identically,

and the value of c increases from the top to the bottom of the plot, ranging from 1.5 to 105.

Each line corresponds to one of the points on figure 4, but for legibility we have only included

every fifth point.

high orders in the ⇢ expansion. This numeric high-orders behavior provides abundant

evidence that the ⇢-series has a finite radius of convergence, breaking down when � /
� log ⇢ / c�1/4 when h ⇠ O(c0), and � / (h/c)1/3 when h/c is fixed but small at large

c check for agreement with what gets written in later sections. Assuming our

numerical extrapolations are correct, this implies that h��i becomes singular at a finite

separation, which is a harbinger of the failure of bulk locality. It may be possible to

analytically continue the propagator to shorter distances, but one would expect it to

develop an imaginary part. In section 6.2 we discuss the interpretation of these results.

6.1 Numerical Results from the ⇢ Expansion

In this section we will study the AdS
3

proto-field propagator numerically to high orders

in the ⇢ expansion. Since ⇢ = e�2� and � is the geodesic separation between the points,

this is an expansion around the long-distance limit. So on physical grounds, we should

expect the propagator to be well-behaved as ⇢ ! 0. If bulk locality did not break

down, then we would expect the radius of convergence of the ⇢-series to be 1, as is the

case for the free field propagator ⇢h

1�⇢
. Instead we will present evidence that:

• The radius of convergence in ⇢ is strictly less than 1 at finite c, which means that

K
holo

develops a singularity22 at some finite critical distance �⇤(c) > 0.

22Padé approximants to the ⇢ series expansion display a ‘condensation’ of poles that suggest that
at distances shorter than �

c

, the correlator will develop a branch cut. (This footnote was written on
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Numerical Results

This expansion diverges at                      where
dependence on the central charge can be extracted:

⇢⇤ ⌘ e�2�⇤

� �� ��� ���� ��� ���
���

���

���

���

���
���
���

�

σ*

����

1

2
log

⇣
7 + 4

p
3
⌘

�⇤R
A
d
S ⇡

11
c �

0
.27

Figure 4. In this plot we used the fits of figure 3 to extract an approximate asymptotic

ratio an+1

an
, which was then used to identify �⇤, the scale at which bulk locality appears to

break down, for each value of c. For very small values of c we find �⇤ of order the AdS

scale, so that at c ! 1 we smoothly match the large h results of section 3.4, as indicated by

the red line. At large c we enter the flat space regime of small �⇤, where we extract the fit

�⇤ / c�0.27. Varying the details of the fitting shifts the exponent, but we consistently find

that it lies between 0.25 and 0.28.

• The failure of convergence occurs at a physical separation in AdS
3

that scales as

�⇤(c) / c�p at large c. We find 0.25 < p < 0.8, which approximates the expected

p ⇡ 1

4

from section 5 but appears slightly larger, as shown in figure 3. This

behavior holds throughout the h ⌧ c regime.

• When h ⇠ c � 1, convergence fails at a physical separation of order the AdS
3

length. The behavior as h � c connects smoothly with the results of section 3.4,

as shown in figure 5. We also find that for any h, when c ⇡ 1 the propagator

breaks down at roughly the same distance scale as in the large h; this is indicated

with the red line on the right-hand plot in figure 3.

Since these results follow from a numerical analysis, they certainly are not theorems.

Readers are encouraged to conduct their own experiments with the attached code im-

plementing the recursion relations of section 4.

Halloween, explaining the invocation of black magic.)
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Breakdown of  
Bulk Locality

Thus all-orders perturbative and numerical results
seem to imply that bulk locality breaks down at

�⇤ ⇠ 4
p

GNR3

Unexpectedly intermediate between Planck and AdS.

It seems that string compactifications all have

`s &
1

c1/4

so maybe the string scale cannot be smaller
than this new scale?  Coincidence?



Semiclassical 
Interpolation

The scale at which bulk locality breaks down
for general central charge and bulk mass.

���� ���� � �� ������

���

���

���

���

���

Figure 6. This figure displays the scale at which the propagator breaks down as we approach

the semiclassical limit; for each value of c, we’ve taken a range of values for the ratio h
c . The

data was extracted in the same way as in Fig. 5. We see that at large h we approach the

convergence bound �⇤ = RAdS log(2 +
p

3) from the exact result of section 3.3. We have

also shown (blue, dashed) the result from the numeric semiclassical computation in section

3.4, and find that it agrees with the radius of convergence analysis for the large c (= 20,000)

points shown above.

where the an depend implicitly on h and c. If the radius of convergence in ⇢ is less

than 1, then the an must grow exponentially, which means that as n ! 1 we must

have an+1

an
! r for some r > 1. However, there will likely be a subleading power-law

behavior as well, so that an ⇡ nvrn for some v. We display a fit to this behavior for 30

values of c, ranging from 1.5 to 105 in figure 4.

The convergence radius in ⇢ and thus the value of r will correspond with a physical

geodesic distance scale in the bulk � = �RAdS
2

log r. Since r depends implicitly on c, if

the physical separation is proportional to c�1/4, then we should find log[r(c)] / c�1/4

at large c. We can test this hypothesis by identifying r(c) for a large range of values

of c, and then fitting a line to log[log r(c)] vs log c, as the slope of this line measures

the exponent �1

4

. We have provided such a fit in figure 5. Varying the details of the

fit changes the exponent p of c�p, but in all cases we find that p ranges between about

0.25 and 0.28. Thus the exponent appears systematically slightly larger than would

be expected from the analysis of section 5. This may be due to the fact that for large

values of c, we simply do not have enough coe�cients an to get to the asymptotic regime

of very large n necessary to correctly identify the exponent. But this discrepancy may
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Summary

I. It’s possible to define what we should mean by an 
exact local bulk observable.  It requires and 

depends importantly on a bulk gauge choice.

II. Although we defined a precise operator, its 
correlators violate locality and unitarity at short-

distances in the bulk due to non-perturbative 
effects at a new intermediate scale.



Future Directions

I. It appears as though a unitary CFT can produce 
bulk correlators that violate locality (only) due to 

non-perturbative effects — implications?

II. What does this mean for other claims about bulk 
locality?  How gauge-dependent is the physics?

III. Now we can compute correlators in a BTZ black 
hole background, study behavior near the 

horizon, and dependence on CFT data details…



Thank You!


