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Basic goal is to solve:

HQFT | i = E| i

But what basis should we choose?

Traditionally:  Fock Space Basis

At strong coupling not a very useful basis



(Reasonable given Eigenstate Thermalization Hypothesis)

Is there a basis which approximates well
low-energy dynamical observables in QFT

even at strong coupling?

Holography says Yes:
 A basis organized by conformal structure!



Any Lorentzian QFT:

UV CFT

Mass Gap
IR CFT

RG-flow

RG-flow 
depends only
on CFT data! 
{�i, C

OPE
ijk }

CFT data 
used to
approx.

E-states of
P 2 ⌘ PµP

µ



Such a scheme is conceptually satisfying 
given recent conformal bootstrap work: 

Unitary CFTs are very special and perhaps 
there’s a hidden formulation which will categorize 
their intrinsic data: {�i, C

OPE
ijk }



Outline 
1. Intro to “conformal truncation” on the light-cone:    

Conformal structure + Light-cone quantization.

2. Tests of the method in 2D - non-pert. RG-flows

3. Sketch of how to apply the method to non-abelian 
gauge theories (including chiral gauge theories in 
4D).  

4. Large-N RG-flows and the Light-cone:                   
A tale of zero-modes. 

5. Conclusions and hopes for the future.



Conformal Truncation on the LC

I.  A conformal basis of the Hilbert space

CFT primaries:

hOi(x)Oj(0)i ⇠ �ij
1

x

2�i
(polarization)

Kallen-Lehmann states are monogamous!

|C, l; ~P , µi ⌘
Z

d

d

x e

�iP ·x O(x)|0i

w/ O some primary op. & P 2 = µ2

A Lorentzian op-state correspondence



CFT Basis:

E-states of momentum, 

and Conformal Casimir, 

~P

C = �(�� d) + l(l + d� 2)

P 2
CFT |C, l; ~P , µi = µ2|C, l; ~P , µi

|C, l; ~P , µi ⌘
Z

d

d

x e

�iP ·x O(x)|0i

2pt fcn induces a inner product on these states:

hC0, l0; ~P 0, µ0|C, l; ~P , µi = �CC0�ll0 ⇢O(µ2)�(µ2 � µ02)�d�1( ~P 0 � ~P )

w/ ⇢O(µ2) the KL spectral density of the op.

⇢O(µ2) ⇠ µ2��d(Scalar op: )



Above states are natural in understanding 
holographic RG-flows

ds

2 =
1

z

2
(dx2 � dz

2)

Ex:  Take a scalar AdS field: �AdS(x
µ
, z)

w/ M2 = C = �(�� d)

h�
AdS

(xµ

, z)|C, l; ~P , µi ⇠ z

d/2
J��d/2(µz) e

�iP ·x

Modes in the Poincare patch of AdS



We can now use the above states to describe any 
RG flow starting from our UV CFT

H = HCFT + V V =

Z
d

d�1
x �OR(~x)

hC0, P 0|V |C, P i =

�

Z
d

d

x

0
d

d

xd

d�1
y e

i(x0·P 0�x·P )hO0(x0)O
R

(~y)O(x)i

Determined by CFT 
data alone!

,



Conformal Truncation on the LC

2.  Quantization on the Light-cone

The problem with standard quantization is
lack of manifest Lorentz-covariance

P 2 = (H0 + V )2 � ~P 2 = P 2
0 +H0V + V H0 + V 2

hC0, P
x

, µ0|V |C, P
x

, µi ⇠ VO0O(µ, µ0, P
x

)

hC0, P
x

, µ0|P 2|C, P
x

, µi ⇠ M2
O0O(µ, µ

0, P
x

)



Simplest ex: �L = �1

2
�m2�2

hP
x

|V |P
x

i = �m2

2
p

P 2
x

+m2

Weinberg’s Infinite Momentum Limit: P
x

! �1

hP
x

|P 2|P
x

i ! m2 + �m2

V 2

hP
x

|P 2|P
x

i = m2 + �m2 +
�m4

2(P 2
x

+m2)
+

hP
x

|V |p1, p2, p3i 6= 0,



The Light-cone limit: P
x

! �1

hC0, P
x

, µ0|V |C, P
x

, µi ! hC0, P�, µ
0|�P+|C, P�, µi P� = |P

x

|,

�P+ =

Z
dx

�
d

d�2
x �OR(x

�
, ~x

?)

(true for �R >
d

2
)



Why is LC manifestly Lorentz-covariant?

Root of the problem with regular quantization:

All boosts depend on interactions

T00 =
1

2
�̇2 +

1

2
(r�)2 +

1

2
m2�2 + ��4Ex:

[J0i, P
2] = 0 J0i =

Z
d

d�1
x x

i
T00(~x),

Boosts mix unperturbed states in a complicated way!

Not so with LC: J+� =

Z
dx

�
d

d�2
x x

�
T

CFT
�� = JCFT

+�

T�� = (@��)
2Ex:

since relevant ops 
only modify the trace: 

Tµ
µ = 2T+� �

X

?
T?? ⇠ �OR



⌘ �CROO0 MR
OO0(µ, µ0) �d�1( ~P 0 � ~P )

hC0, P�, µ
0|�P+|C, P�, µi = �

Z
d

d

x

0
d

d

xd

d�1
y e

i(x0·P 0�x·P )hO0(x0)O
R

(y�, ~y?)O(x)i

|C, P�, µiStates transform simply under J+�

One can choose a convention where: 

CFT Kinematic 
Boost invariant/Lorentz covariant



X
�

 (µ, z) (µ0, z)

K(q2, z)

q0 =
p
µ2 + P 2

x

�
p
µ02 + P 2

x

P
x

! �1 :

q0 ! µ2 � µ02

2P
x

! 0

hC0, P
x

, µ0|V |C, P
x

, µi =

K(q2 ! 0, z) ⇠ zd��

! MR
O0O(µ, µ

0)

(L-inv. data consistent with 
holographic RG-flow intuition)

How to see Lorentz-covariance of amplitude in LC limit?



RG-flow as a Hamiltonian equation:

P 2| i = µ2
 | i

expressed in our basis as:

µ2 O(µ) + �
X

O0

CROO0

Z
dµ02 MR

OO0(µ, µ0)  O0(µ0) = µ2
  O(µ)

w/ hC, l;µ| i ⌘ ⇢O(µ) O(µ)

Ok - but how do we implement this practically?

QFT

(interested in examples with “bad AdS duals”)



1.  Need to discretize the µ label:

|C, l; ~P , ki ⌘
Z ⇤2

0
dµ2 gk(µ)|C, l; ~P , µi

w/ ⇤ a cutoff and polys of deg k, gk(µ)

Z ⇤2

0
dµ2⇢O(µ) gk(µ)gk0(µ) = �kk0obeying:

2.  Truncate the Hilbert space in order to calculate:

k  k
max

C  C
max



k  k
max

:  bounds the IR resolution.

⇤

k
max

. µ < ⇤

C  C
max

:  dials the complexity of the basis.

k-max ~ several 100

C
max

= �2
max

+ · · ·

Delta max ~ (few) x 10

Due to the complexity of computing the 
OPE coefficients (even for a free theory!)



Summary of the method in a heuristic 
holographic picture:

Bulk fields with mass:

M
AdS

 M
max

z ⇠ 1

⇤

UV 
cutoff

z ⇠ k
max

⇤

IR 
cutoff



Holographic picture suggests why we expect 
the truncation to converge!

We’re integrating out bulk fields by restricting
the Conformal Casimir. 

Naive expectation is that 
low-energy quantities converge as:

⇠ 1

(�
max

)p

Really this should be some property of the OPE 
coefficients:

X

�i=�H

C2
OLOROHi

COHi
OROHi

⇠ 1

(�H)q



2D Test:  QCD at small-N

L = �1

2
Tr

�
(@�A+)

2
�
+ i †D+ + i�†@��

L = �1

4
Tr(F 2) + i ̄�µDµ SU(N):

[g] ⇠ (Mass)

P+ = �g

2

Z
dx

�
 

†
T

a
 

1

@

2
�
 

†
T

a
 



2D QCD
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Ex N=3:  |B1i = 0.81
⇣p

3(@ † �  †@ )
⌘
|⌦i � 0.57

✓
3p
2
( † )2

◆
|⌦i

(up to ~1% corrections)

w/ G. Marques-Tavares 
& Y. Xu



2D scalar: L =
1

2
(@�)2 � m2

2
�2 � �

4!
�4

Flows to the 2D Ising for � ! �⇤ :

2D CFT basis in this case is chiral:

O =
X

cn1,··· ,nm@n1
� (@��) · · · @nm

� (@��)

P 2O = 0 no µ / k
max

LIR =
1

2
 i@+ +

1

2
�i@���mf� 
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Spectrum @ random strong coupling
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two-particle 
threshold
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Gap closes!

(critical coupling 
 roughly consistent w/

Chabysheva et al.)
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Dynamical observable:  2pt function 
from the spectral density

Note:  density is difficult for lattice to extract.

IO(µ2) ⌘
Z µ2

0
dµ0 2 ⇢O(µ0 2) =

X

µiµ

|hO(0)|µii|2
In practice:

hO(r)O(0)i =
Z

dµ2 ⇢O(µ)�0(µ, r)
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Spectral Density of the trace of stress-tensor 
� +

-
��
��
��
��
��
��
��
���
��
��
���
�

▲▲ ▲
▲

▲

▲

◆◆◆◆ ◆ ◆
◆

◆

◆

■■■■■■ ■ ■
■

■

■

■

●●●●●●●
●

●
●

●

●

●

▲ Δ��� = ��

◆ Δ��� = ��

■ Δ��� = ��

● Δ��� = ��

0 2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

▲ ▲

▲

▲

◆ ◆ ◆
◆

◆

◆

■ ■ ■ ■
■

■

■

■

●● ● ● ●
●

●

●

●

▲ Δ��� = ��

◆ Δ��� = ��

■ Δ��� = ��

● Δ��� = ��

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.002

0.004

0.006

0.008

0.010

0.012
���� ��

μ� / ��

T+� = mf� 

� +
-
��
��
��
��
��
��
��
���
��
��
���
�

● ● ● ●
●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.002

0.004

0.006

0.008

0.010

0.012
Δ��� = ��
λ
� π = ����

●● ● ● ●
●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.002

0.004

0.006

0.008

0.010

0.012
Δ��� = ��
λ
� π = ����

●● ● ● ● ●
●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.002

0.004

0.006

0.008

0.010

0.012
Δ��� = ��
λ
� π = ����

●● ● ● ● ●
●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.002

0.004

0.006

0.008

0.010

0.012
Δ��� = ��
λ
� π = ����

μ� / ��

Smoking gun
for CFT



The C-Function

(also spectral integral of  T�� )



The C-Function and correction 
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A sketch of application to
Gauge theories 

Traditionally: L = LA + L �gAµJ
µ
 (x)

Problem:  gAµJ
µ
 (x) is not a local gauge-inv. op!

Quantization becomes sensitive choosing
an appropriate regulator!

No robust non-perturbative regulator 
for any known Hamiltonian method 
respecting space-time symmetries.

Moreover - log running isn’t really ever a CFT!



Alternative idea:

1.  “Banks-Zaks the theory”:

Ex.  QCD w/ some flavors (2-6):  Add more flavors.

Add vector-like matter to make the theory a weakly 
coupled CFT.

Nf=16: ↵s⇤ ⇡ .04 Nf=15: ↵s⇤ ⇡ .15 Nf=14: ↵s⇤ ⇡ .25

2.  Remove the extra matter:

�P+ =

Z
d

d�1
x mq  ̄i i(~x)Ex.  QCD:

Gauge Inv. local Op.



Chiral Ex. SU(5) w/ 10 + 5

Tension:

Computability of CFT 
data:  

small coupling.
(conformal bootstrap can help!)

A possible easier start:

N = 4 SYM @ large-N Large-N Yang-Mills

Wanting a smaller basis or 
shorter RG-flows:  
larger coupling.
(but still allowing for 
separation of scales)

Add 4 Adjoint fermions: ↵⇤ ⇠ .16



LC and Large-N

V = N�

Z
d

d�1
xOR(x)hOiOROji ⇠ 1

N
Single-trace: ,

hOiOR[OjOk]i ⇠ 1

N2Generic double-trace:

hOiOR[OiOR]i ⇠ 1 +
1

N2Problematic double-traces:

Naively all planar multi-trace data matters !



On the LC:

hO, ~P , µ|VLC |O0, ~P 0, µ0i = 0 (�0 = �+�R + 2n)

hOiOR[OiOR]i ⇠ 1 +
1

N2X

Only single-trace data matters! 

But are we being too quick here?



Lbulk =
1

2
(@�)2 � 1

2
m2�2 � 1

4

g4
N2

�4

Cautionary Tale:  AdS Bulk Toy Bulk Model (no gravity) 

��-� � ��� ���
���

���

���

���

���

���

�

ϕ(
�)

�zd��R

s
�m2

g4



LC “Zero-modes”

Field modes with P� = 0 thrown out by naive LC

We need a method of integrating 
such modes out properly!

Prescription:

U(x+
, 0) ⌘ T {e�i

R
x

+

0 dy+V
LC

(y+)}

H
eff

⌘ lim
x

+!0
i@+U(x+, 0)

(Ex: bulk profile of our toy made of such modes) 



hO, P�, µ|U(x+
, 0)|O, P�, µ

0i = hO, P�, µ|O, P�, µ
0i � i

Z
x

+

0
dy

+
1 hO, P�, µ|V (y+1 )|O, P�, µ

0i

�1

2

Z
x

+

0
dy+1 dy

+
2 hO, P�, µ|T {V (y+1 )V (y+2 )}|O, P�, µ

0i+ · · ·

Z
x

+

0
dy+1 dy

+
2 hO, P�, µ|T {V (y+1 )V (y+2 )}|O, P�, µ

0i ⇠
Z

x

+

0
dy+1 hO, P�, µ|�Heff

(y+1 )|O, P�, µ
0i

Zero-modes:  Associated with �(y+ij)

Higher-point CFT correlation functions 
can contribute to H eff

Only contribute if 3pt-functions vanish on the LC:
�0 = �+�R + 2n



Lbulk =
1

2
(@�)2 � 1

2
m2�2 � 1

4

g4
N2

�4

AdS Bulk Toy Model 

O O

OO

O O

OO
φcl

O

O

O O

φcl

Prescription adds missing contributions to Heff



Advantages of the Prescription 

1.  Demonstrates that correct LC treatment includes            
a vacuum energy.

2.   Shows that in PT the zero modes often only induce      
a change in bare parameters!

2D scalar theory: m2
LC = m2

ET +
�

2
h�2i

3.  Integrates out non-dynamical fields.  (Ex:  fermions) 

4.  Allows us to check when RG-flows starting with 
Large-N CFTs require multi-trace operator data.



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.00

0.01

0.02

0.03

0.04

���� / Λ

ϕ�
��
��
��
��
��
�
��
���
�

0.0 0.1 0.2 0.3

0.8

0.9

1.0

1.1

1.2

���� = ����
κ = ��� Λ

A simple 3D Large-N theory where naive LC works

L =
1

2

⇣
@~�

⌘2
� �

4!

⇣
~�2
⌘2

at Large-NO(N):

RG-flow takes: �UV = 1 ! �IR = 2 (keeping same Casimir)

⇢~� 2(µ
2) =

1
4⇡µ

1 +
⇣


8µ

⌘2

+ + + · · ·This follows from bubble sum:



Large-N RG-flow 
in the presence 

of mass

⇢~� 2(µ
2) =

1
4⇡µ⇣

1 +


8⇡µ log

⇣
µ+2m
µ�2m

⌘⌘2
+

⇣

8µ

⌘2
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Conclusions 
1. There’s new approach to solving/quantizing a QFT using conformal 

structure on the LC which uses only UV CFT data. 

2. It is based on the decoupling of high Casimir states from the low-E 
spectrum (motivated by AdS/CFT).

3. Allows calculation of dynamical quantities like the spectral density 
difficult to obtain with other numerical methods.

4. It has passed certain tests in 2D and has provided new RG-flow results 
(including the c-function).

5. Should be possible to extend it to theories with gauge-bosons and 
fermions (including chiral gauge theories in 4D).

6. In some cases LC greatly simplifies large-N RG-flows and we now have a 
diagnostic as to when this happens.  N=4 SYM naively appears to simplify. 



Spectrum near the critical coupling
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Spectral Densities: Universality in odd sector 
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