Solving QFT by a method inspired by Holography

Ami Katz

Boston University

w/ N.Anand, L. Fitzpatrick, J. Kaplan
Z. Khandker, L.Vitale, M.Walters.

Basic goal is to solve:

$$
H_{Q F T}|\psi\rangle=E|\psi\rangle
$$

But what basis should we choose?

Traditionally: Fock Space Basis

At strong coupling not a very useful basis

Is there a basis which approximates well low-energy dynamical observables in QFT even at strong coupling?

(Reasonable given Eigenstate Thermalization Hypothesis)

Holography says Yes:
A basis organized by conformal structure!

Any Lorentzian QFT:

Such a scheme is conceptually satisfying given recent conformal bootstrap work:

O(N): Scaling Dimensions

Ising: OPE Coefficients

Unitary CFTs are very special and perhaps there's a hidden formulation which will categorize their intrinsic data: $\left\{\Delta_{i}, C_{i j k}^{O P E}\right\}$

Outline

I. Intro to "conformal truncation" on the light-cone: Conformal structure + Light-cone quantization.
2. Tests of the method in 2D - non-pert. RG-flows
3. Sketch of how to apply the method to non-abelian gauge theories (including chiral gauge theories in 4D).
4. Large-N RG-flows and the Light-cone: A tale of zero-modes.
5. Conclusions and hopes for the future.

Conformal Truncation on the LC

I. A conformal basis of the Hilbert space

CFT primaries:

$$
\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)\right\rangle \sim \delta_{i j} \frac{1}{x^{2 \Delta_{i}}}(\text { polarization })
$$

Kallen-Lehmann states are monogamous!

$$
|\mathcal{C}, l ; \vec{P}, \mu\rangle \equiv \int d^{d} x e^{-i P \cdot x} \mathcal{O}(x)|0\rangle
$$

w / \mathcal{O} some primary op. \& $P^{2}=\mu^{2}$
A Lorentzian op-state correspondence

CFT Basis: $\quad|\mathcal{C}, l ; \vec{P}, \mu\rangle \equiv \int d^{d} x e^{-i P \cdot x} \mathcal{O}(x)|0\rangle$
E-states of momentum, \vec{P}
and Conformal Casimir, $\mathcal{C}=\Delta(\Delta-d)+l(l+d-2)$

$$
P_{C F T}^{2}|\mathcal{C}, l ; \vec{P}, \mu\rangle=\mu^{2}|\mathcal{C}, l ; \vec{P}, \mu\rangle
$$

$2 p t$ fcn induces a inner product on these states:
$\left\langle\mathcal{C}^{\prime}, l^{\prime} ; \vec{P}^{\prime}, \mu^{\prime} \mid \mathcal{C}, l ; \vec{P}, \mu\right\rangle=\delta_{\mathcal{C} \mathcal{C}^{\prime}} \delta_{l l^{\prime}} \rho_{\mathcal{O}}\left(\mu^{2}\right) \delta\left(\mu^{2}-\mu^{\prime 2}\right) \delta^{d-1}\left(\overrightarrow{P^{\prime}}-\vec{P}\right)$
$\mathrm{w} / \rho_{\mathcal{O}}\left(\mu^{2}\right)$ the KL spectral density of the op.
(Scalar op: $\left.\quad \rho_{\mathcal{O}}\left(\mu^{2}\right) \sim \mu^{2 \Delta-d}\right)$

Above states are natural in understanding holographic RG-flows

Modes in the Poincare patch of AdS

$$
d s^{2}=\frac{1}{z^{2}}\left(d x^{2}-d z^{2}\right)
$$

Ex: Take a scalar AdS field: $\Phi_{A d S}\left(x^{\mu}, z\right)$

$$
\begin{gathered}
\mathbf{w} / M^{2}=\mathcal{C}=\Delta(\Delta-d) \\
\left\langle\Phi_{A d S}\left(x^{\mu}, z\right) \mid \mathcal{C}, l ; \vec{P}, \mu\right\rangle \sim z^{d / 2} J_{\Delta-d / 2}(\mu z) e^{-i P \cdot x}
\end{gathered}
$$

We can now use the above states to describe any RG flow starting from our UV CFT

$$
H=H_{C F T}+V, \quad V=\int d^{d-1} x \lambda \mathcal{O}_{R}(\vec{x})
$$

$\left\langle\mathcal{C}^{\prime}, P^{\prime}\right| V|\mathcal{C}, P\rangle=$

$$
\lambda \int d^{d} x^{\prime} d^{d} x d^{d-1} y e^{i\left(x^{\prime} \cdot P^{\prime}-x \cdot P\right)}\left\langle\mathcal{O}^{\prime}\left(x^{\prime}\right) \mathcal{O}_{R}(\vec{y}) \mathcal{O}(x)\right\rangle
$$

Determined by CFT data alone!

Conformal Truncation on the LC

2. Quantization on the Light-cone

The problem with standard quantization is lack of manifest Lorentz-covariance

$$
\left\langle\mathcal{C}^{\prime}, P_{x}, \mu^{\prime}\right| V\left|\mathcal{C}, P_{x}, \mu\right\rangle \sim V_{\mathcal{O}^{\prime} \mathcal{O}}\left(\mu, \mu^{\prime}, P_{x}\right)
$$

$$
P^{2}=\left(H_{0}+V\right)^{2}-\vec{P}^{2}=P_{0}^{2}+H_{0} V+V H_{0}+V^{2}
$$

$$
\left\langle\mathcal{C}^{\prime}, P_{x}, \mu^{\prime}\right| P^{2}\left|\mathcal{C}, P_{x}, \mu\right\rangle \sim M_{\mathcal{O}^{\prime} \mathcal{O}}^{2}\left(\mu, \mu^{\prime}, P_{x}\right)
$$

Simplest ex: $\quad \delta \mathcal{L}=-\frac{1}{2} \delta m^{2} \phi^{2}$

$$
\begin{array}{r}
\left\langle P_{x}\right| V\left|P_{x}\right\rangle=\frac{\delta m^{2}}{2 \sqrt{P_{x}^{2}+m^{2}}},\left\langle P_{x}\right| V\left|p_{1}, p_{2}, p_{3}\right\rangle \neq 0 \\
\left\langle P_{x}\right| P^{2}\left|P_{x}\right\rangle=m^{2}+\delta m^{2}+\frac{\delta m^{4}}{2\left(P_{x}^{2}+m^{2}\right)}+
\end{array}
$$

Weinberg's Infinite Momentum Limit: $\quad P_{x} \rightarrow-\infty$

$$
\left\langle P_{x}\right| P^{2}\left|P_{x}\right\rangle \rightarrow m^{2}+\delta m^{2}
$$

The Light-cone limit: $P_{x} \rightarrow-\infty$
$\left\langle\mathcal{C}^{\prime}, P_{x}, \mu^{\prime}\right| V\left|\mathcal{C}, P_{x}, \mu\right\rangle \rightarrow\left\langle\mathcal{C}^{\prime}, P_{-}, \mu^{\prime}\right| \delta P_{+}\left|\mathcal{C}, P_{-}, \mu\right\rangle, P_{-}=\left|P_{x}\right|$

$$
\delta P_{+}=\int d x^{-} d^{d-2} x \lambda \mathcal{O}_{R}\left(x^{-}, \vec{x}^{\perp}\right)
$$

(true for $\Delta_{R}>\frac{d}{2}$)

Why is LC manifestly Lorentz-covariant?

Root of the problem with regular quantization:
All boosts depend on interactions

$$
\left[J_{0 i}, P^{2}\right]=0 \quad, \quad J_{0 i}=\int d^{d-1} x x^{i} T_{00}(\vec{x})
$$

$$
\underline{\text { Ex: }} T_{00}=\frac{1}{2} \dot{\phi}^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}+\lambda \phi^{4}
$$

Boosts mix unperturbed states in a complicated way!
Not so with LC: $J_{+-}=\int d x^{-} d^{d-2} x x^{-} T_{--}^{C F T}=J_{+-}^{C F T}$

$$
\text { Ex: } \quad T_{--}=\left(\partial_{-} \phi\right)^{2}
$$

since relevant ops only modify the trace:

$$
T_{\mu}^{\mu}=2 T_{+-}-\sum_{\perp} T_{\perp \perp} \sim \lambda \mathcal{O}_{R}
$$

States $\left|\mathcal{C}, P_{-}, \mu\right\rangle$ transform simply under J_{+-}

\downarrow

One can choose a convention where:
$\left\langle\mathcal{C}^{\prime}, P_{-}, \mu^{\prime}\right| \delta P_{+}\left|\mathcal{C}, P_{-}, \mu\right\rangle=\lambda \int d^{d} x^{\prime} d^{d} x d^{d-1} y e^{i\left(x^{\prime} \cdot P^{\prime}-x \cdot P\right)}\left\langle\mathcal{O}^{\prime}\left(x^{\prime}\right) \mathcal{O}_{R}\left(y^{-}, \vec{y}^{\perp}\right) \mathcal{O}(x)\right\rangle$

$$
\begin{gathered}
\equiv \lambda C_{R \mathcal{O} \mathcal{O}^{\prime}} \underbrace{\mathcal{M}_{\mathcal{O}}{ }^{\prime}\left(\mu, \mu^{\prime}\right)}_{\text {CFT Kinematic }} \delta^{d-1}\left(\overrightarrow{P^{\prime}}-\vec{P}\right) \\
\text { Boost invariant/Lorentz covariant }
\end{gathered}
$$

How to see Lorentz-covariance of amplitude in LC limit?
$\left\langle\mathcal{C}^{\prime}, P_{x}, \mu^{\prime}\right| V\left|\mathcal{C}, P_{x}, \mu\right\rangle=$

$$
q_{0}=\sqrt{\mu^{2}+P_{x}^{2}}-\sqrt{\mu^{\prime 2}+P_{x}^{2}}
$$

$$
P_{x} \rightarrow-\infty:
$$

$$
q_{0} \rightarrow \frac{\mu^{2}-\mu^{\prime 2}}{2 P_{x}} \rightarrow 0
$$

$$
\mathcal{K}\left(q^{2} \rightarrow 0, z\right) \sim z^{d-\Delta}
$$

$\rightarrow \mathcal{M}_{\mathcal{O}^{\prime} \mathcal{O}}^{R}\left(\mu, \mu^{\prime}\right)$
(L-inv. data consistent with
holographic RG-flow intuition)

RG-flow as a Hamiltonian equation:

$$
P^{2}|\psi\rangle=\mu_{\psi}^{2}|\psi\rangle
$$

expressed in our basis as:

$$
\left.\mu^{2} \psi_{\mathcal{O}}(\mu)+\lambda \sum_{\mathcal{O}^{\prime}} C_{R \mathcal{O} \mathcal{O}^{\prime}} \int d \mu^{\prime 2} \mathcal{M}_{\mathcal{O} \mathcal{O}^{\prime}}^{R}\left(\mu, \mu^{\prime}\right) \psi_{\mathcal{O}^{\prime}}\left(\mu^{\prime}\right)=\mu_{\psi}^{2} \psi_{\mathcal{O}}(\mu)\right]
$$

QFT

$$
\mathbf{w} /\langle\mathcal{C}, l ; \mu \mid \psi\rangle \equiv \rho_{\mathcal{O}}(\mu) \psi_{\mathcal{O}}(\mu)
$$

Ok - but how do we implement this practically?
(interested in examples with "bad AdS duals")
I. Need to discretize the μ label:

$$
|\mathcal{C}, l ; \vec{P}, k\rangle \equiv \int_{0}^{\Lambda^{2}} d \mu^{2} g_{k}(\mu)|\mathcal{C}, l ; \vec{P}, \mu\rangle
$$

w/ Λ a cutoff and polys of deg $\mathrm{k}, g_{k}(\mu)$

$$
\text { obeying: } \int_{0}^{\Lambda^{2}} d \mu^{2} \rho_{\mathcal{O}}(\mu) g_{k}(\mu) g_{k^{\prime}}(\mu)=\delta_{k k^{\prime}}
$$

2. Truncate the Hilbert space in order to calculate:

$$
k \leq k_{\max } \quad \mathcal{C} \leq \mathcal{C}_{\max }
$$

$k \leq k_{\max }$: bounds the IR resolution.

$$
\frac{\Lambda}{k_{\max }} \lesssim \mu<\Lambda \quad \text { k-max } \sim \text { several } 100
$$

$\mathcal{C} \leq \mathcal{C}_{\text {max }}$: dials the complexity of the basis.

$$
\mathcal{C}_{\max }=\Delta_{\max }^{2}+\cdots
$$

Delta $\max \sim(\mathrm{few}) \times 10$
Due to the complexity of computing the OPE coefficients (even for a free theory!)

Summary of the method in a heuristic holographic picture:

Holographic picture suggests why we expect the truncation to converge!

We're integrating out bulk fields by restricting the Conformal Casimir.

Naive expectation is that low-energy quantities converge as:

Really this should be some property of the OPE coefficients:

2D Test: QCD at small-N

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left(\left(\partial_{-} A_{+}\right)^{2}\right)+i \psi^{\dagger} D_{+} \psi+i \chi^{\dagger} \partial_{-} \chi
$$

$$
\begin{gathered}
P_{+}=-g^{2} \int d x^{-} \psi^{\dagger} T^{a} \psi \frac{1}{\partial_{-}^{2}} \psi^{\dagger} T^{a} \psi \\
{[g] \sim(\text { Mass })}
\end{gathered}
$$

Ex $\mathbf{N}=3:\left|B_{1}\right\rangle=0.81\left(\sqrt{3}\left(\partial \psi^{\dagger} \psi-\psi^{\dagger} \partial \psi\right)\right)|\Omega\rangle-0.57\left(\frac{3}{\sqrt{2}}\left(\psi^{\dagger} \psi\right)^{2}\right)|\Omega\rangle$
(up to $\sim 1 \%$ corrections)

2D scalar: $\quad \mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$
Flows to the 2D Ising for $\lambda \rightarrow \lambda_{*}$:

$$
\mathcal{L}_{I R}=\frac{1}{2} \psi i \partial_{+} \psi+\frac{1}{2} \chi i \partial_{-} \chi-m_{f} \chi \psi
$$

2D CFT basis in this case is chiral:

$$
\begin{aligned}
\mathcal{O} & =\sum c_{n_{1}, \cdots, n_{m}} \partial_{-}^{n_{1}}\left(\partial_{-} \phi\right) \cdots \partial_{-}^{n_{m}}\left(\partial_{-} \phi\right) \\
P^{2} \mathcal{O} & =0 \quad \text { no } \mu / k_{\max }
\end{aligned}
$$

Conjectured behavior (leading to convergence)

Spectrum @ random strong coupling

Gap closes!
(critical coupling roughly consistent w/
Chabysheva et al.)

Dynamical observable: 2pt function from the spectral density

$$
\langle\mathcal{O}(r) \mathcal{O}(0)\rangle=\int d \mu^{2} \rho_{\mathcal{O}}(\mu) \Delta_{0}(\mu, r)
$$

Note: density is difficult for lattice to extract.

In practice:

$$
I_{\mathcal{O}}\left(\mu^{2}\right) \equiv \int_{0}^{\mu^{2}} d \mu^{\prime 2} \rho_{\mathcal{O}}\left(\mu^{\prime 2}\right)=\sum_{\mu_{i} \leq \mu}\left|\left\langle\mathcal{O}(0) \mid \mu_{i}\right\rangle\right|^{2}
$$

Spectral Density of ϕ^{2}

Spectral Densities: Universality in even sector

Spectral Density of the trace of stress-tensor

The C-Function

(also spectral integral of T_{--})

The C-Function and correction

$$
T_{+-} \approx m_{g a p} \epsilon-\frac{\partial^{2} \epsilon}{\Lambda}+\cdots
$$

The corrected C-Function

Numerically: $\Lambda \approx 1 \sim \frac{\lambda}{4 \pi}$

A sketch of application to Gauge theories

Traditionally: $\mathcal{L}=\mathcal{L}_{A}+\mathcal{L}_{\psi}-g A_{\mu} J_{\psi}^{\mu}(x)$
Problem: $g A_{\mu} J_{\psi}^{\mu}(x)$ is not a local gauge-inv. op!
Quantization becomes sensitive choosing an appropriate regulator!
No robust non-perturbative regulator for any known Hamiltonian method respecting space-time symmetries.

Moreover - log running isn't really ever a CFT!

Alternative idea:
I. "Banks-Zaks the theory":

Add vector-like matter to make the theory a weakly coupled CFT.

Ex. QCD w/ some flavors (2-6): Add more flavors.
$\mathrm{Nf}=16: \alpha_{s} * \approx .04 \quad \mathrm{Nf}=\left|5: \alpha_{s} * \approx .15 \mathrm{Nf}=\right| 4: \alpha_{s} * \approx .25$
2. Remove the extra matter:

Ex. QCD: $\delta P_{+}=\int d^{d-1} x m_{q} \bar{\psi}_{i} \psi_{i}(\vec{x})$
Gauge Inv. local Op.

Chiral Ex. SU(5) w/ $10+\overline{5}$

Add 4 Adjoint fermions: $\alpha_{*} \sim .16$

Tension:

Computability of CFT data:
small coupling.
(conformal bootstrap can help!)
A possible easier start:

$$
\mathcal{N}=4 \text { SYM @ large-N Large-N Yang-Mills }
$$

LC and Large-N

Single-trace: $\left\langle\mathcal{O}_{i} \mathcal{O}_{R} \mathcal{O}_{j}\right\rangle \sim \frac{1}{N} \quad, \quad V=N \lambda \int d^{d-1} x \mathcal{O}_{R}(x)$
Generic double-trace: $\left\langle\mathcal{O}_{i} \mathcal{O}_{R}\left[\mathcal{O}_{j} \mathcal{O}_{k}\right]\right\rangle \sim \frac{1}{N^{2}}$
$\underline{\text { Problematic double-traces: }}\left\langle\mathcal{O}_{i} \mathcal{O}_{R}\left[\mathcal{O}_{i} \mathcal{O}_{R}\right]\right\rangle \sim 1+\frac{1}{N^{2}}$

Naively all planar multi-trace data matters !

On the LC:

$$
\begin{gathered}
\langle\mathcal{O}, \vec{P}, \mu| V_{L C}\left|\mathcal{O}^{\prime}, \vec{P}^{\prime}, \mu^{\prime}\right\rangle=0 \quad\left(\Delta^{\prime}=\Delta+\Delta_{R}+2 n\right) \\
\left\langle\mathcal{O}_{i} \mathcal{O}_{R}\left[\mathcal{O}_{i} \mathcal{O}_{R}\right]\right\rangle \sim \mathbb{X}+\frac{1}{N^{2}}
\end{gathered}
$$

Only single-trace data matters!

But are we being too quick here?

Cautionary Tale: AdS Bulk Toy Bulk Model (no gravity)

$$
\mathcal{L}_{\text {bulk }}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4} \frac{g_{4}}{N^{2}} \phi^{4}
$$

LC "Zero-modes"

Field modes with $P_{-}=0$ thrown out by naive LC
(Ex: bulk profile of our toy made of such modes)
We need a method of integrating such modes out properly!

Prescription:

$$
\begin{aligned}
U\left(x^{+}, 0\right) & \equiv \mathcal{T}\left\{e^{-i \int_{0}^{x^{+}} d y^{+} V_{L C}\left(y^{+}\right)}\right\} \\
H_{e f f} & \equiv \lim _{x^{+} \rightarrow 0} i \partial_{+} U\left(x^{+}, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\mathcal{O}, P_{-}, \mu\right| U\left(x^{+}, 0\right)\left|\mathcal{O}, P_{-}, \mu^{\prime}\right\rangle=\left\langle\mathcal{O}, P_{-}, \mu \mid \mathcal{O}, P_{-}, \mu^{\prime}\right\rangle- & i \int_{0}^{x^{+}} d y_{1}^{+}\left\langle\mathcal{O}, P_{-}, \mu\right| V\left(y_{1}^{+}\right)\left|\mathcal{O}, P_{-}, \mu^{\prime}\right\rangle \\
& -\frac{1}{2} \int_{0}^{x^{+}} d y_{1}^{+} d y_{2}^{+}\left\langle\mathcal{O}, P_{-}, \mu\right| \mathcal{T}\left\{V\left(y_{1}^{+}\right) V\left(y_{2}^{+}\right)\right\}\left|\mathcal{O}, P_{-}, \mu^{\prime}\right\rangle+\cdots
\end{aligned}
$$

Zero-modes: Associated with $\delta\left(y_{i j}^{+}\right)$

$$
\int_{0}^{x^{+}} d y_{1}^{+} d y_{2}^{+}\left\langle\mathcal{O}, P_{-}, \mu\right| \mathcal{T}\left\{V\left(y_{1}^{+}\right) V\left(y_{2}^{+}\right)\right\}\left|\mathcal{O}, P_{-}, \mu^{\prime}\right\rangle \sim \int_{0}^{x^{+}} d y_{1}^{+}\left\langle\mathcal{O}, P_{-}, \mu\right| \delta H_{e f f}\left(y_{1}^{+}\right)\left|\mathcal{O}, P_{-}, \mu^{\prime}\right\rangle
$$

Higher-point CFT correlation functions can contribute to Heff
Only contribute if 3 pt-functions vanish on the LC:

$$
\Delta^{\prime}=\Delta+\Delta_{R}+2 n
$$

AdS Bulk Toy Model

$$
\mathcal{L}_{\text {bulk }}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4} \frac{g_{4}}{N^{2}} \phi^{4}
$$

Prescription adds missing contributions to $\mathrm{H}_{\text {eff }}$

Advantages of the Prescription

I. Demonstrates that correct LC treatment includes a vacuum energy.
2. Shows that in PT the zero modes often only induce a change in bare parameters!

$$
\underline{\text { 2D scalar theory: }} m_{L C}^{2}=m_{E T}^{2}+\frac{\lambda}{2}\left\langle\phi^{2}\right\rangle
$$

3. Integrates out non-dynamical fields. (Ex: fermions)
4. Allows us to check when RG-flows starting with Large-N CFTs require multi-trace operator data.

A simple 3D Large- N theory where naive LC works

$$
\mathrm{O}(\mathbf{N}): \mathcal{L}=\frac{1}{2}(\partial \vec{\phi})^{2}-\frac{\lambda}{4!}\left(\vec{\phi}^{2}\right)^{2} \text { at Large- } \mathbf{N}
$$

RG-flow takes: $\Delta_{U V}=1 \rightarrow \Delta_{I R}=2$ (keeping same Casimir)
This follows from bubble sum:

$$
\rho_{\vec{\phi}^{2}}\left(\mu^{2}\right)=\frac{\frac{1}{4 \pi \mu}}{1+\left(\frac{\kappa}{8 \mu}\right)^{2}}
$$

Large-N RG-flow in the presence of mass

$$
\rho_{\vec{\phi}^{2}}\left(\mu^{2}\right)=\frac{\frac{1}{4 \pi \mu}}{\left(1+\frac{\kappa}{8 \pi \mu} \log \left(\frac{\mu+2 m}{\mu-2 m}\right)\right)^{2}+\left(\frac{\kappa}{8 \mu}\right)^{2}}
$$

Conclusions

I. There's new approach to solving/quantizing a QFT using conformal structure on the LC which uses only UV CFT data.
2. It is based on the decoupling of high Casimir states from the low-E spectrum (motivated by AdS/CFT).
3. Allows calculation of dynamical quantities like the spectral density difficult to obtain with other numerical methods.
4. It has passed certain tests in 2D and has provided new RG-flow results (including the c-function).
5. Should be possible to extend it to theories with gauge-bosons and fermions (including chiral gauge theories in 4D).
6. In some cases LC greatly simplifies large-N RG-flows and we now have a diagnostic as to when this happens. N=4 SYM naively appears to simplify.

Spectrum near the critical coupling

Spectral Densities: Universality in odd sector

