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Fuzzballs

Fuzzballs are classical solutions with the same charges
as the black-hole. Look like black-holes at
long-distances. Differ where the horizon would have
been. (Fuzzballs have no horizon.)

Avoid no-hair theorem, because an extra-dimension
shrinks to zero before we reach the horizon.
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The Fuzzball proposal

Fuzzballs have structure; the extra-dimension can
shrink to zero, in various ways.

Claim is that fuzzballs are the true microstates of the
black-hole.

Fuzzball program also claims that black-holes have no
interior. (This feature also suggested as resolution to
information paradox.)
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Summary

We will examine the viability of the fuzzball proposal.

Will argue, on general statistical-mechanics
consideration that black-hole microstates cannot be
represented by distinct classical geometries.

Also argue that fuzzballs cannot serve as reliable
indicators of the nature of the black-hole interior.

These general arguments are backed by specific
calculations in various sets of fuzzball solutions.
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Typical States

Let HE be the subspace of states in the energy band
[E −∆E ,E + ∆E ].

Theorem: Typical states picked with the Haar measure,
dµψ, on this space are exponentially close to the
microcanonical ensemble.∫

〈Ψ|A|Ψ〉dµψ = Tr(ρA),

where ρ = e−S1HE

Deviations are exponentially suppressed∫
(〈Ψ|A|Ψ〉 − Tr(ρA))2 dµψ =

(
Tr(ρA2)− (TrρA)2)

eS + 1



Critique of
Fuzzballs

Suvrat Raju

Overview

Statistical
Preliminaries

Two-charge
fuzzball
solutions

Three-charge
fuzzball
solutions

Conclusions

Typicality of most states

Most states are very close to typical. Volume of atypical
states is exponentially suppressed.
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Implications for the fuzzball program

Almost all black-hole microstates correspond to a
single special average geometry

Average geometry must be the conventional black-hole
when conventional black-hole has a regular horizon.
[Otherwise, strong implications for AdS/CFT.]
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Fuzzballs as a basis

Perhaps fuzzballs form an atypical basis?

But even a basis cannot be too atypical.
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Limits on atypicality

Let A be an operator where ratio of microcanonical
standard deviation and expectation value is small:
σ
〈A〉 = 1

Sα for some positive number α. eg. Take A to be
the metric operator at some point in space well away
from the horizon.

Let |vα1〉 . . . |vαM 〉 be those elements of a basis where
〈vαj |A|vαj 〉−〈A〉

〈A〉 remains finite in the thermodynamic limit.

Then M
eS vanishes at least as fast as O

( 1
Sα

)
.
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Limits on atypicality

So, even if fuzzballs form an atypical basis, 1−O
( 1

Sα

)
of

fuzzball states must have metric expectation values within
O
( 1

Sα

)
of the black-hole away from the horizon.

So if fuzzballs are microstates, typical fuzzballs must
resemble a black-hole almost exactly up to the horizon; and
possibly deviate a Planck distance away.

ℓpl
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Additional arguments for Planck-scale structure

Previous argument relied on assuming that bulk metric
was good observable with small fluctuations.

But, even considering asymptotic observables, we
expect this structure because black-hole microstates
are expected to satisfy

1 Vanishing gap between excitations in thermodynamic
limit: O

(
eS
)

states in O (S) energy means
neighbouring states are separated by O

(
e−S

)
.

(Requires large red-shifts.)
2 Eigenstate thermalization:

〈vj |A|vi〉 = Aiδij + Be
−S

2 Rij

Requires most basis states to be close to the
microcanonical average.
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Planck-scale structure

Can classical solutions be used to argue for such
Planck-scale structure?

ℓpl



Critique of
Fuzzballs

Suvrat Raju

Overview

Statistical
Preliminaries

Two-charge
fuzzball
solutions

Three-charge
fuzzball
solutions

Conclusions

Difference and Classicality Parameters

For any observable, define classicality parameter

εA(r , x) = | σ(r , x)

Afuz(r , x)
|

and difference parameter

ηA(r , x) =
∣∣Abh(r , x)− Afuz(r , x)

Afuz(r , x)

∣∣
These measure how reliable a classical solution is and how
distinguishable it is from the black-hole.
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Planck scale structure?

Expect that

0
ηA

ǫA

ℓpl

So the solution is either indistinguishable from the
conventional black-hole or unreliable.
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Summary of logic

General statistical
considerations

Fuzzballs can only
have Planck scale 

structure

Suggests solutions
are indistinguishable from b.h
in most of space or unreliable

where they are

Concrete verification
with examples
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Summary of rest of talk

We now verify these expectations in
1 Original Lunin-Mathur two-charge solutions (claimed to

correspond to 1/2-BPS states of the D1-D5 system)

2 Recently discovered three-charge solutions (Bena et
al.) (claimed to correspond to 1/4-BPS black holes in
the D1-D5 system.)
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Lunin-Mathur Geometries

Claimed to be dual to 1/2-BPS sector of the D1-D5 CFT.

ds2 = e−
φ
2 ds2

str, e−φ =
f5
f1
,

ds2
str =

1√
f1f5

(
−(dt + A)2 + (dy + B)2

)
+
√

f1f5d~x2 +

√
f1
f5

d~z2,

f5 = 1 +
Q5

L

∫ L

0

ds

|~x − ~F (s)|2
; f1 = 1 +

Q5

L

∫ L

0

|~F ′(s)|2

|~x − ~F (s)|2

Ai =
Q5

L
dx i

∫ L

0

Fi(s)

|~x − ~F (s)|2
ds; dB = ∗4dA

C =
1
f1

(dt + A) ∧ (dy + B) + C; dC = − ∗4 df5.
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Conventional solution

Conventional solution obtained by

f1 → 1 +
Q1
~x2 ; f5 → 1 +

Q5
~x2

with

ds2
str =

1√
f1f5

(
−dt2 + dy2

)
+
√

f1f5d~x2 +

√
f1
f5

d~z2,

Conventional solution has vanishing horizon; different
setting compared to macroscopic black holes.
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Quantization of Lunin-Mathur Solutions

Solutions were quantized by Rychkov. F k (s) becomes
an operator

F k (s) = µ
∑
n>0

1√
2n

(
ak

ne
−2πins

L + (ak
n)†e

2πins
L

)
,

States with right charges satisfy
∑

na†nan = N1N5.

Also

µ =
gs

R
√

V4
, L =

2πQ5

R
Q5 = gsN5; Q1 = gsN1/V4

Sfuzz(E) = 2π

√
2N1N5

3
Not the full entropy, S(E) = 2π

√
2N1N5, but at least

scales correctly.
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Physical Quantities Computed

We will compute

〈f5〉, 〈f1〉, 〈Ai〉

and
〈f 2

5 〉, 〈f 2
1 〉, 〈AiAj〉

We can compute “thermal” expectations

〈O〉β = Tr
(

e−βHO
)

where β =

(
2π2

3N1N5

) 1
2

is the inverse-“temperature” at which 〈H〉 = N1N5.

Precisely verify our expectations of η (difference
parameter) and ε (classicality parameter)
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Quantum Expectation Values

For one-point functions we find

〈f5 − 1〉β = Q5
1− e−

r2
a

r2

〈f1 − 1〉β = Q1

(
1− e−

r2
a

)
r2

〈Ai〉β = −Q5

r4

(
axie−

r2
a

(
1− e

r2
a +

r2

a

))
where

a =
π2µ2

3β
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Implications of one-point functions

The “average” geometry differs from conventional
geometry when r2 = a.

At r2 = a, in units where α′ = 1, the compact-direction
has radius

R2
stretched =

π

2

√
2
3

(
Q1

Q5

) 1
4 `4pl√

Vcom

Volume of the compact-manifold in string-frame should
satisfy Vcom ≥ 1 and dilaton should be small Q1

Q5
� 1.

=⇒ Rstretched � `pl!

So the “quantum-corrected” fuzzball geometry corrects
conventional geometry after compact direction has shrunk
below Planck scale!
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Expectations for η and ε

〈f5〉β = 1 + Q5
1− e−

r2
a

r2

〈f5〉bh = 1 +
Q5

r2

Away from r2 = a, geometry is indistinguishable from
the conventional geometry.

Close to r2 = a, quantum fluctuations expected to be
large, so geometry is unreliable.
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Quantum Fluctuations in f5

We find

〈(f5 − 1)2〉 =

∫ L

0

ds
L

ds′

L
e−

r2
c

c2

[
Ei
(

r2

c

)
− 2Ei

(
(a− c)r2

ac

)

+ Ei
(

(a− c)r2

c(a + c)

)]
+

2ae−
r2
a

cr2(a− c)
− (a + c)e−

2r2
a+c

cr2(a− c)
− 1

cr2

where

c =
µ2

β

[
Li2

(
e−

2iπ(s−s′)
L

)
+ Li2

(
e

2iπ(s−s′)
L

)]

and

Ei(x) = −
∫ ∞
−x

e−tP
(

1
t

)
dt

Integral over s, s′ must be done numerically.
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Classicality and Deviation Parameters for f5:
small r

η5 =
∣∣〈(f5 − 1)〉β − f bh

5 + 1
〈(f5 − 1)〉β

∣∣
ε5 =

∣∣
(
〈(f5 − 1)2〉β − 〈(f5 − 1)〉2β

) 1
2

〈(f5 − 1)〉β
∣∣

Solution differs from the black-hole only around
r = O (a). For small r

η5 = − a
r2 +

1
2

; ε5 = 0.426− 0.119
r2

a
;

So, quantum fluctuations are O (1) at r = 0.
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Results for Difference and Classicality
Parameters

Can compute fluctuations for larger r numerically.

2 4 6 8

r2

a

0.2

0.4

0.6

0.8

ϵ5, η5

η5

ϵ5

Precisely as expected, solution is either indistinguishable
from the conventional solution or unreliable.
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Quantum fluctuations in Ai

1
Q2

5
〈AiAj〉 = Aδij + Bxixj

where

A =
(c − a)e−

r2
c
(
r2(c − a) + 3c(a + c)

) (
−2Ei

(
(a−c)r2

ac

)
+ Ei

(
(a−c)r2

c(a+c)

)
+ Ei

(
r2

c

))
12c4

+
ae−

r2
a
(
−ac2(a + 3c) + r4(a− c)2 + cr2(c − a)(2a + 3c)

)
6c3r4(a− c)

+
(a + c)e−

2r2
a+c
(
c2r2(a + c)2 + r6 (−(a− c)2)+ 2cr4(a− c)(a + c)

)
12c3r6(a− c)

and

B =

(
a2 + 4ac + c2)e−

r2
c

(
−2Ei

(
(a−c)r2

ac

)
+ Ei

(
(a−c)r2

c(a+c)

)
+ Ei

(
r2

c

))
6c4

+
ae−

r2
a
(
a2 (2c2 + cr2 + r4)+ ac

(
6c2 + 5cr2 + 4r4)+ c2r2 (6c + r2))

3c3r6(a− c)

−
(a + c)e−

2r2
a+c
(
a2 (2c2 + cr2 + r4)+ 2ac

(
2c2 + 3cr2 + 2r4)+ c2 (2c2 + 5cr2 + r4))

6c3r6(a− c)
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Difference and Classicality Parameters for Ai

ηA = 1

εA =

(
x̂ i x̂ j〈AiAj〉β − x̂ i x̂ j〈Ai〉β〈Aj〉β

) 1
2

x̂ i x̂ j〈Ai〉β〈Aj〉β

At small r , we have

εA = 0.140
√

a
r

+ 1.587
r√
a
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Difference and Classicality Parameters for Ai

For arbitrary r , we can plot

2 4 6 8

r2

a

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ϵA, ηA

ηA

ϵA
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Three-charge solutions

Lunin-Mathur geometries correspond to solutions that
have no horizon classically.

Several solutions with same charges as macroscopic
black-holes have been found.

A recent larger class was found by Bena et al.
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Three-charge solutions

ds2
6 = − 2√

P
(dv + β)(du + ω +

1
2
F(dv + β)) +

√
Pds2

4

u = (t − y)/
√

2; v = (t + y)/
√

2; y ∼ y + 2πRy ;

ds2
4 =

Σdr2

r2 + a2 + Σdθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdψ2;

P = Z1Z2 − Z 2
4 ; β =

a2Ry√
2Σ

(sin2 θdφ− cos2 θdψ);

Σ = (r2 + a2 cos2 θ)

Solutions are asymptotically AdS and labeled by integers
n,m, k and parameters a,b,Ry . We only consider
k = 1,m = 0, arbitrary n.
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Three-charge solutions

Charges are

JL =
N
2

(
a2 +

m
k

b2
)

; JR =
N
2

a2; np =
N
2

(m + n)

k
b2.

with N = n1n5
a2+b2/2 . We will denote κ = b

a .

The asymptotic AdS radius is

λ4

R2
y

= a2 + b2/2.

Useful to think of b ∼ O (λ). Then “a” controls the size
of the fuzzball.
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Scalar Wightman Function

We will compute

G(ω, γ) =

∫
〈Ψ|O(t , y)O(0,0)|Ψ〉eiωte

iγy
Ry dtdy

for a marginal scalar operator O(t , y) on the boundary.

Note this is a Wightman function.
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Physical Quantity of Interest: Large γ
Behaviour

At large-γ one can prove for the thermal Wightman
function that

lim
γ→∞

− log |Gω,k |
γ

≥ β

2

Here β = min(βL, βR).

Black holes saturate this bound.

Physically, the near-horizon region allows arbitrarily
spacelike modes to propagate.

Do fuzzball solutions saturate this bound? If not, they
violate the Eigenstate Thermalization Hypothesis.
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Physical Quantity of Interest: Gap between
successive excitations

In a system with large-entropy, eS states must fit in an
O (S) energy range.

So gap between successive excitations is O
(
e−S)

True even in integrable systems; stronger expectation
than eigenstate thermalization hypothesis.

Only free-theories with degeneracy violate this bound.

Gap can be measured by considering the support of
G(ω, γ).
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Propagation of a massless scalar

Wave-equation 2φ = 0 is separable!

We will consider propagation with no angular
momentum on S3 for simplicity.

We set
φ(r , t , y) =

ψω,γ(r)√
r(r2 + a2)

eiωteiγy
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Wave Equation

With ξ = r
a and b = aκ, we have

ψ′′ω,k (ξ)− V (ξ)ψω,γ(ξ) = 0

with

V (ξ) =
1

4
(
ξ2 + 1

)2

[
6 +

4γ2 − 1
ξ2 + 4γ2 + 3ξ2

+ κ2
(
κ2 + 2

)
(ω − γ)2 ξ2n(

ξ2 + 1
)n −

(
κ2(ω − γ) + 2ω

)2 ]
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WKB Potential

0.5 1.0 1.5 2.0 2.5 3.0
ξ

-4000

-2000

2000

4000

V

n = 1

n = 2

n = 10

A graph of V (ξ) vs ξ with γ = 10, ω = 0, κ = 4 and
different values of n.

Black-hole potential would keep dropping to −∞ near
ξ = 0.
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Energy gap

At large γ, we can use the WKB approximation. We get
the standard quantization condition

2
∫ ξ2

ξ1

|V (ζ)|
1
2 dζ = (2m + 1)π

At large κ we get

(δω)κ2gn = π

where gn = {0.5,0.574,0.610,0.632,0.648, . . .}.
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Numerical calculation of the energy gap

We can calculate the energy-gap by solving the scalar
equation numerically. WKB approximation is excellent at
large γ.

5 10 15 20
κ

0.1

0.2

0.3

0.4

0.5

0.6

δω

(Comparison between a numerical calculation (dots) of the
gap between the first two allowed frequencies and analytic
formula for γ = 100,n = 2.)
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Energy-gap conclusions

The energy gap between successive excitations is O (1)
and too large for these states to be microstates of the black
hole. O (1) gap is suggestive of a phase of zero-entropy.
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Large-γ falloff

At large γ, the Wightman function falls off faster than
the black-hole. Does not saturate large-γ bound.

λfuzz = lim
γ→∞

− log |Gω,k |
γ

=
π

2
√

n
+

(11n − 1)π

16n
3
2κ2

λfuzz −
1
2
βL =

π(3n + 7)

16κ2n3/2 + O
(

1
κ4

)
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Large-γ falloff

Asymptotic falloff can also be verified numerically

40 50 60 70 80 90
γ

20

40

60

-Log[C]

n = 1

n = 2

n = 10

Comparison between a numerical calculation (dots) of the
asymptotic value C with the analytic formula for different
values of n, γ with κ = 5.
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Large-γ falloff conclusions

For κ = b
a = O (1), the Wightman function falls off too fast at

large-γ, and suggests that if fuzzball states are black-hole
microstates, they violate eigenstate thermalization.

If these fuzzballs are microstates, some other fuzzballs
must “oversaturate” the large-γ bound. We do not know of
any geometry that oversaturates the bound.
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Fuzzballs that vary at O (1) distance from the b.h.
horizon cannot represent b.h. microstates.

If fuzzballs are to represent even a basis of black-hole
microstates, typical fuzzballs can vary from the
conventional black-hole only Planck-length outside the
horizon.

But, in such geometries, quantum fluctuations become
large near horizon. So the classical solution is
unreliable where it is interesting.
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Fuzzballs as stars

All such problems arise, if we insist on fuzzballs as
black-hole microstates.

If we think of fuzzballs as stars in string-theory, they
constitute an interesting class of solutions, which
deserve investigation.
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a→ 0 limit

What if a = `pl? Then κ→∞, and the energy-gap and
large-γ falloff tend to the black-hole answer.

The a→ 0 solutions represent only a small class of
microstates, since JL, JR ∝ a2.

But can these solutions be microstates of the
non-rotating D1-D5 system?
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a→ 0 limit

First note that if we stay away from r ∼ O (a), then

ds2
6 −→a→0

(
b2n − 2r2)
√

2bRy
dt2 +

(
b2n + 2r2)
√

2bRy
dy2 +

bRy√
2r2

dr2

+

√
2bn
Ry

dtdy +
bRy cos2(θ)√

2
dψ2 +

bRy sin2(θ)√
2

dφ2 +
bRy√

2
dθ2

Change of variables to

ρ =

(
r2 +

b2n
2

) 1
2

shows this is the metric of an extremal BTZ black hole.
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a→ 0 limit

But if we take r = aξ and expand around ξ = 0, we find
a different metric! eg. for n = 2,

√
−g = a2λ2ξ

√
1− ξ4 cos(θ) sin(θ)

Now, if a ∼ O
(
`pl
)

then δa ∼ a. [ensemble fluctuations.]

So we expect

ε ∼ δg
g
∼ δg

gδa
δa = O (1)

if δgδa ∼
g
a and δa

a = O (1).
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