Scattering Forms from Geometries at Infinity

Song He

Institute of Theoretical Physics, CAS
with N. Arkani-Hamed, Y. Bai, G. Yan, 1711.09102 + work in progress

April 42017
Focus Week on Quantum Gravity and Holography

IPMU, University of Tokyo

Motivations

Scattering Amplitudes: crucial for particle physics, and only known observable of quantum gravity in asymptotically flat spacetime

Natural holographic question: is there a "theory at infinity" that computes S-matrix without local evolution? much harder than in AdS
∂ of AdS $=$ ordinary space with time \& locality" \Longrightarrow local QFT
No such luxuries for asymptotics of flat spacetime: no time/locality! Mystery: what principles a "theory of S-matrix" should be based on?

This is why S-matrix program failed! New strategy in its revival: look for fundamentally new laws (\leftrightarrow new mathematical structures) \rightarrow S-matrix as the answer to entirely different kinds of questions \rightarrow "discover" unitarity and causality, as derived consequences!

Geometric structures

Fascinating geometric structures underlying scattering amplitudes (particles, strings etc.) in some auxiliary space, encouraging this p.o.v.

- $\mathcal{M}_{g, n}$: perturbative string theory, amplitudes $=$ correlators in worldsheet CFT \rightarrow twistor string theory\& scattering equations, similar worldsheet picture without stringy excitations
- Generalized $G_{+}(k, n)$: the amplituhedron for $\mathcal{N}=4$ SYM

Both geometries have "factorizing" boundary structures: locality and unitarity naturally emerge (without referring to the bulk)

What questions to ask, directly in the "kinematic space", to generate local, unitary dynamics? Avatar of these geometries?

Amplitudes as Forms

Scattering amps as differential forms on kinematic space \rightarrow a new picture for amplituhedron [Arkani-Hamed, Hugh, Trnka] \& much more!

Forms on momentum twistor space "bosonize" superamplitude in $\mathcal{N}=4$ SYM: replacing η_{i} by $d Z_{i} \Longrightarrow \Omega_{n}^{(4 k)}$ for $\mathrm{N}^{k} \mathrm{MHV}$ tree (tree) Ampliuehedron $=$ "positive region" $\cap 4 k$-dim subspaces $\left.\Omega_{n}^{(4 k)}\right|_{\text {subspace }}=$ canonical form of positive geometry [Arkani-Hamed, Bai, Lam] Same for momentum-space forms combining helicity amps $(|h| \leq 1)$

This talk: identical structure for wide variety of theories in any dim:

- Bi-adjoint ϕ^{3} from kinematic and worldsheet associahedra
- "Geometrize" color \& its duality to kinematics, YM/NLSM etc.

Kinematic Space

The kinematic space, \mathcal{K}_{n}, for n massless momenta $p_{i}(D \geq n-1)$ is spanned by Mandelstam variables $s_{i j}$'s subject to $\sum_{j \neq i} s_{i j}=0$, thus $\operatorname{dim} \mathcal{K}_{n}=\binom{n}{2}-n=\frac{n(n-3)}{2}$; for any subset $I, s_{I}=\sum_{i<j \in I} s_{i j}$

Planar variables $s_{i, i+1, \cdots, j}$ for an ordering $(12 \cdots n)$ are dual to $n(n-3) / 2$ diagonals of a n-gon with edges $p_{1}, p_{2}, \cdots, p_{n}$
A planar cubic tree graph consists of $n-3$ compatible planar variables as poles, and it is dual to a full triangulation of the n-gon

Claim: all the $\frac{n(n-3)}{2}$ planar variables form a basis of \mathcal{K}_{n}
e.g. $\left\{s_{12}=s, s_{23}=t\right\}$ for $\mathcal{K}_{4},\left\{s_{12}, s_{23}, s_{34}, s_{45}, s_{51}\right\}$ for \mathcal{K}_{5},
$\left\{s_{12}, \cdots, s_{61}, s_{123}, s_{234}, s_{345}\right\}$ for \mathcal{K}_{6}

The Associahedron

The associahedron polytope encodes combinatorial "factorization": each co-dim d face represent a triangulation with d diagonals or planar tree with d propagators (vertices \leftrightarrow planar cubic trees)

Universal factorization structures of any massless tree amps (in particular ϕ^{3}), but how to realize it directly in kinematic space?

Kinematic Associahedron

Positive region Δ_{n} : all planar variables $s_{i, i+1, \cdots, j} \geq 0$ (top-dimension)
Subspace $H_{n}:-s_{i j}=c_{i, j}$ as positive constants, for all non-adjacent pairs $1 \leq i, j<n$; we have $\frac{(n-2)(n-3)}{2}$ conditions $\Longrightarrow \operatorname{dim} H_{n}=n-3$. Kinematic Associahedron is their intersection! $\mathcal{A}_{n}:=\Delta_{n} \cap H_{n}$

$$
\text { Proof : } s_{i j}=s_{i, \cdots, j}-s_{i, \cdots, j-1}-s_{i+1, \cdots, j}+s_{i+1, \cdots, j-1}=-c_{i, j}<0
$$

\Longrightarrow no boundaries for crossing diagonals are allowed, e.g. $s_{12}=s_{23}=0$ forbidden $\left(-c_{1,3}=s_{13} \geq 0\right.$ leads to contradiction $)$

Equivalently, one can show \mathcal{A}_{n} factorizes to $\mathcal{A}_{L} \otimes \mathcal{A}_{R}$ on every face!

$$
e . g . \mathcal{A}_{4}=\{s>0, t>0\} \cap\{-u=\text { const }>0\}
$$

$$
\mathcal{A}_{5}=\left\{s_{12}, \cdots, s_{51}>0\right\} \cap\left\{s_{13}, s_{14}, s_{24}=\text { const }<0\right\}
$$

[^0]
Planar Scattering Forms

The planar scattering form for ordering $(12 \cdots n)$ is a sum of rank- $(n-3)$ $d \log$ forms for Cat $_{n-2}$ planar cubic graphs with $\operatorname{sign}(g)= \pm 1$:

$$
\Omega_{n}^{(n-3)}:=\sum_{\text {planar } g} \operatorname{sign}(g) \bigwedge_{a=1}^{n-3} d \log s_{i_{a}, i_{a}+1, \cdots, j_{a}}
$$

Projectivity: invariant under local GL(1) transf. $s_{i, \cdots, j} \rightarrow \Lambda(s) s_{i, \cdots, j}$
\Longrightarrow Sign-flip rule: $\operatorname{sign}(g)=-\operatorname{sign}\left(g^{\prime}\right)$ for any two planar graphs g, g^{\prime} related by a mutation, i.e. exchange of channel in a 4pt subgraph

Projectivity is equivalent to requiring that the form only depends on ratios of variables, e.g. $\Omega_{4}^{(1)}=\frac{d s}{s}-\frac{d t}{t}=d \log \frac{s}{t}$ and

$$
\begin{aligned}
\Omega_{5}^{(2)} & =\frac{d s_{12}}{s_{12}} \wedge \frac{d s_{34}}{s_{34}}+\frac{d s_{23}}{s_{23}} \wedge \frac{d s_{45}}{s_{45}}+\cdots+\frac{d s_{51}}{s_{51}} \wedge \frac{d s_{23}}{s_{23}} \\
& =d \log \frac{s_{12}}{s_{23}} \wedge d \log \frac{s_{12}}{s_{45}}+d \log \frac{s_{12}}{s_{51}} \wedge d \log \frac{s_{34}}{s_{23}} \\
\Omega_{6}^{(2)} & =\sum_{g=1}^{14} \pm \wedge(d \log s)^{3}=\sum \pm d \log \text { ratio's } s
\end{aligned}
$$

It follows immediately that $\Omega^{(n-3)}$ is cyclically invariant up to a sign $i \rightarrow i+1: \Omega_{n}^{(n-3)} \rightarrow(-1)^{n-3} \Omega_{n}^{(n-3)}$, and it factorizes correctly e.g.

$$
s_{1, \cdots, m} \rightarrow 0: \quad \Omega_{n} \rightarrow \Omega_{m+1} \wedge d \log s_{1, \cdots, m} \wedge \Omega_{n-m+1}
$$

Projectivity is a remarkable property of $\Omega_{n}^{(n-3)}$, not true for each diagram or any proper subset of planar Feynman diagrams.

Canonical Form of \mathcal{A}_{n}

Unique form of any positive geometry= "volume" of the dual: $\Omega(A)$ has $d \log$ singularities on all boundaries ∂A with Res $=\Omega(\partial A)$

For simple polytopes: $\sum_{v} \pm \wedge d \log F$ for faces $F=0$ adjacent to v
Canonical form of $\mathcal{A}_{n}=$ Pullback of Ω_{n} to $H_{n} \propto$ planar ϕ^{3} amplitude!

$$
\begin{gathered}
\text { e.g. } \quad \Omega\left(\mathcal{A}_{4}\right)=\left.\Omega_{4}^{(1)}\right|_{H_{4}}=\left.\left(\frac{d s}{s}-\frac{d t}{t}\right)\right|_{-u=c>0}=\left(\frac{1}{s}+\frac{1}{t}\right) d s \\
\Omega\left(\mathcal{A}_{5}\right)=\left.\Omega_{5}^{(2)}\right|_{H_{5}}=\left(\frac{1}{s_{12} s_{34}}+\cdots+\frac{1}{s_{51} s_{23}}\right) d s_{12} \wedge d s_{34} \\
\Omega\left(\mathcal{A}_{n}\right)= \\
\sum \operatorname{sgn}(g) \wedge d \log s_{i, \cdots, j}(\mathbf{s}, c)=d^{n-3} \mathbf{s} m(12 \cdots n \mid 12 \cdots n)
\end{gathered}
$$

Similarly for $m(\alpha \mid \beta)$: "volume" of degenerate \mathcal{A}_{n} (faces at infinity)

Triangulations \& New Rep. of ϕ^{3} Amps

Geometric picture: Feynman-diagram expansion = triangulation of the dual into Cat ${ }_{n-2}$ simplices by introducing the point at "infinity" Triangulate the dual or itself in other ways \rightarrow new rep. of ϕ^{3} amps!

Similar to "local" or "BCFW" triangulations of the amplituhedron: manifest new symmetries of ϕ^{3} obscured by Feynman diagrams!

Wordsheet Associahedron

A well-known associahedron: minimal blow-up of the open-string worldsheet $\mathcal{M}_{0, n}^{+}:=\left\{\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}\right\} / \operatorname{SL}(2, \mathbb{R})$ [Deligne, Mumford]

This is non-trivial in σ^{\prime} s but becomes manifest e.g. using cross ratios
The canonical form of $\overline{\mathcal{M}}_{0, n}^{+}$is the "Parke-Taylor" form [see also Mizera]

$$
\omega_{n}^{\mathrm{WS}}:=\frac{1}{\operatorname{vol}[\mathrm{SL}(2)]} \prod_{a=1}^{n} \frac{d \sigma_{a}}{\sigma_{a}-\sigma_{a+1}}:=\mathrm{PT}(1,2, \cdots, n) d \mu_{n}
$$

Beautifully "planar scattering form" of $\overline{\mathcal{M}}_{0, n}^{+}$in cross-ratio space.
How to connect old and new: $\overline{\mathcal{M}}_{0, n}^{+} \leftrightarrow \mathcal{A}_{n}$ and their canonical forms?

Scattering Equations as a Diffeomorphism

With pullback to $H_{n}\left(-s_{i, j}=c_{i, j}\right)$, scattering equations
$\left(\sum_{b \neq a} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0\right)$ provide a one-to-one map from $\overline{\mathcal{M}}_{0, n}^{+}$to \mathcal{A}_{n} :

$$
s_{a, a+1}=\sigma_{a, a+1} \sum_{1<i+1 \leq a \leq j<n} \frac{c_{i, j}}{\sigma_{i, j}} \quad \text { for } a=1, \ldots, n-3\left(\sigma_{n} \rightarrow \infty\right)
$$

and similarly for $s_{a, a+1, \cdots, b}$: positive iff $\{\sigma\} \in \mathcal{M}_{0, n}^{+}$(on H_{n})!
One (out of $(n-3)!$) positive solution iff positive kinematics $\{s\} \in \Delta_{n}$.

Pushforward from Worldsheet

Theorem: diffeomorphism $A \rightarrow B \Longrightarrow$ pushforward $\Omega(A) \rightarrow \Omega(B)$

$$
y=f(x) \text { as diffeom. from } A \text { to } B: \quad \Omega(B)_{y}=\sum_{x=f^{-1}(y)} \Omega(A)_{x}
$$

\Longrightarrow canonical form of \mathcal{A}_{n} is the pushforward of ω_{n}^{WS} by summing over $(n-3)$! sol. of scattering eqs. (equivalent to CHY)

$$
\left.\sum_{\text {sol. }} d \mu_{n} \mathrm{PT}(\alpha)\right|_{H(\alpha)}=m(\alpha \mid \alpha) d^{n-3} \mathbf{s} \text { or } \sum_{\text {sol. }} \omega_{n}^{\mathrm{WS}}(\alpha)=\Omega_{\phi^{3}}^{(n-3)}(\alpha)
$$

General :

$$
\sum_{\text {sol. }} d \mu_{n} I_{n}:=\left.\Omega_{n}[I] \rightarrow \Omega_{n}[I]\right|_{H_{\alpha}}=d^{n-3} \mathbf{s} \int_{\mathrm{CHY}} \operatorname{PT}(\alpha) \times I_{n}
$$

General Scattering Forms

General Scattering Forms: sum over all cubic graphs with numerators

$$
\Omega[N]=\sum_{g} N(g) \bigwedge_{I=1}^{n-3} d \log s_{I}, \quad \text { e.g. } N_{s} d \log s+N_{t} d \log t+N_{u} d \log u
$$

N_{g} are "kinematic numerators" that can depend on other data, for all $(2 n-5)!!$ cubic tree graphs, e.g. 15 for $n=5$ and 105 for $n=6$.
$\Omega_{\phi^{3}}: N_{g}=0$ for non-planar graphs and $N_{g}= \pm 1$ for planar ones.
Natural Qs: what constraints can we put on these forms and what physics information do they contain? How can we relate them to scattering amplitudes of some theories? \rightarrow Projectivity is the key!

Projectivity and BCJ duality

Projectivity: require $\Omega[N]$ to be well-defined in projectivized space (treating s_{I} 's independently), i.e. covariant under $s_{I} \rightarrow \Lambda(s) s_{I}$
\Longrightarrow kinematic numerators can be chosen to satisfy Jacobi identities

$$
N\left(g_{S}\right)+N\left(g_{T}\right)+N\left(g_{U}\right)=0, \quad \text { e.g. } N_{s}+N_{t}+N_{u}=0
$$

g_{S}

g_{T}

g_{U}

A "geometric" origin of BCJ duality [BCJ 08], but how to get amps?

Color is Kinematics I

Duality between color factors and differential forms on \mathcal{K}_{n} for cubic graphs: $C(g)$ and $W(g)$ satisfy the same algebra! Recall

$$
C(g):=\prod_{v=1}^{n-2} f^{a_{v} b_{v} c_{v}} \Longrightarrow C\left(g_{S}\right)+C\left(g_{T}\right)+C\left(g_{U}\right)=0, \forall \text { triplet }
$$

Claim : $W(g):= \pm \bigwedge_{I=1}^{n-3} d s_{I} \Longrightarrow W\left(g_{S}\right)+W\left(g_{T}\right)+W\left(g_{U}\right)=0$

This is a basic fact of \mathcal{K}_{n} directly follows from mom-conservation:
$s_{I_{1} I_{2}}+s_{I_{2} I_{3}}+s_{I_{1} I_{3}}=s_{I_{1}}+s_{I_{2}}+s_{I_{3}} \Longrightarrow\left(d s_{I_{1} I_{2}}+d s_{I_{2} I_{3}}+d s_{I_{1} I_{3}}\right) \wedge \cdots=0$

Fundamental link between color \& kinematics (forms on \mathcal{K}_{n}) \Longrightarrow Duality between color-dressed amps and scattering forms:

$$
\begin{gathered}
\mathbf{M}_{n}[N] \quad \leftrightarrow \quad \Omega^{(n-3)}[N] \\
\mathbf{M}_{n}[N]=\sum_{\text {cubic } g} N(g) C(g) \prod_{I \in g} \frac{1}{s_{I}} \\
\Omega^{(n-3)}[N]=\sum_{\text {cubic } g} N(g) W(g) \prod_{I \in g} \frac{1}{s_{I}}
\end{gathered}
$$

Scattering forms are color-dressed amps without color factors!

Color is Kinematics II

More is true for $\mathrm{U}(N) / \mathrm{SU}(N)$: partial amps as pullback of forms

$$
\text { trace decomp. } \mathbf{M}_{n}[N]=\sum_{\beta \in S_{n} / Z_{n}} \operatorname{Tr}(\beta(1), \ldots, \beta(n)) M_{n}[N ; \beta]
$$

\Longrightarrow partial amp. $\quad M_{n}[N ; \beta]=\sum_{\beta-\text { planar } g} N(g \mid \beta) \prod_{I \in g} \frac{1}{s_{I}}$
Completely parallel: Partial amplitude $=$ pullback of scattering form to subspace $H(\beta)=\left\{s_{\beta(i) \beta(j)}=\right.$ const. $\}$ for non-adjacent $1 \leq i<j<n$

$$
\left.\Omega^{(n-3)}[N]\right|_{H[\beta]}=\left(\sum_{\beta \text {-pl. } g} N(g \mid \beta) \prod_{I \in g} \frac{1}{s_{I}}\right) d V[\beta]=M_{n}[N ; \beta] d V[\beta]
$$

Gravity Amplitudes and Double Copy

How about theories without color, such as gravity amplitude? A 0 -form or equivalently top form, $\Omega^{\text {top }}=M_{n} \times d^{n(n-3) / 2} s$

Define dual forms for every scattering form: e.g. the dual for ϕ^{3}

$$
\tilde{\Omega}_{\phi^{3}}(1,2, \cdots, n):=\bigwedge_{1 \leq i<j-1<n-1} d s_{i, j},
$$

\Longrightarrow pullback to partial amp, e.g. $M_{n}^{\mathrm{YM}}(\alpha) d^{n(n-3) / 2} s=\Omega_{\mathrm{YM}} \wedge \tilde{\Omega}_{\phi^{3}}(\alpha)$
Natural language for BCJ double-copy : top form for e.g. gravity is literally the (wedge) product of a Ω_{YM} and its dual $\tilde{\Omega}_{\mathrm{YM}}$:

$$
\Omega_{\mathrm{GR}}^{\mathrm{top}}=\Omega_{\mathrm{YM}}^{(n-3)} \wedge \tilde{\Omega}_{\mathrm{YM}}^{(n-2)(n-3) / 2}=d^{n(n-3)} s \sum_{g} \prod_{I \in g} \frac{N(g) \tilde{N}(g)}{s_{I}}
$$

Scattering Forms for Gluons and Pions

Permutation invariant forms encoding full amps of gluon/pion scattering (e.g. can be directed constructed from "Feynman rules") \rightarrow Remarkably rigid, fundamental objects for YM \& NLSM (lowest dim):

$$
\Omega_{\mathrm{YM} / \mathrm{NLSM}}^{(n-3)}=\sum_{g}^{(2 n-5)!!} N_{\mathrm{YM} / \mathrm{NLSM}}(g) \bigwedge_{a=1}^{n-3} d \log S_{I_{a}}
$$

$N_{\text {NLSM }}(\{s\})$ of degree- $(n-2)$ in $s_{i, j} ; N_{\mathrm{YM}}(\{\epsilon, p\})$ from contractions of momenta \& polarizations with no more than $(n-2)\left(\epsilon_{i} \cdot p_{j}\right)$ (rep. dependent and can be chosen to satisfy Jacobi) . For $n=4$:

$$
\begin{gathered}
\Omega_{\mathrm{NLSM}}^{(1)}=s d t-t d s=t d u-u d t=u d s-s d u \\
\Omega_{\mathrm{YM}}^{(1)}=\frac{\mathbf{T}_{8}(\epsilon, p)}{s t u} \Omega_{\mathrm{NLSM}}^{(1)}=N_{\mathrm{YM}}\left(g_{1234}\right) d \log \frac{s}{t}+N_{\mathrm{YM}}\left(g_{1324}\right) d \log \frac{u}{t}
\end{gathered}
$$

Uniqueness of YM and NLSM Forms

Gauge invariance: Ω_{YM} invariant under every shift $\epsilon_{i}^{\mu} \rightarrow \epsilon_{i}^{\mu}+\alpha p_{i}^{\mu}$ Adler zero: $\Omega_{\text {NLSM }}$ vanishes under every soft limit $p_{i}^{\mu} \rightarrow 0$

Key: forms are projective \Longrightarrow unique Ω_{YM} and Ω_{NLSM} ! Stronger than the amp "uniqueness theorem" [Arkani-Hamed, Rodina, Trnka]: $(n-1)$! parameters for amp vs. unique form up to an overall const.

Proof: (1). $\Omega_{\text {ansatz }}^{(n-3)}=\sum_{\pi \in S_{n-2}} W\left(g_{\pi}\right) A_{n}(\pi)$ with "partial amps" $A_{n}(\pi)$ sum over π-planar graphs
(2). $A_{n}(\pi)=\alpha_{\pi} M_{n}(\pi)$ by amp "uniqueness", and $\alpha_{\pi}=\alpha$ since $A_{n}(\pi)$'s must satisfy BCJ relations by projectivity!

Direct proof/deeper reason for uniqueness of forms? Extended positive geometry for gluons ("geometrize" polarizations) \& pions ?

YM and NLSM Forms from the Worldsheet

Despite lack of geometric meaning, non- d log projective forms can also be obtained as pushforward of non- d log worldsheet forms

$$
\begin{gathered}
\Omega[N]=\sum_{\pi} N\left(g_{\pi}\right) \Omega_{\phi^{3}}(\pi) \Longrightarrow \Omega[N]=\sum_{\text {sol. }} \omega[N], \\
\omega[N] \simeq d \mu_{n} \sum_{\pi} N\left(g_{\pi}\right) \mathrm{PT}_{\mathrm{n}}(\pi), \quad \simeq \text { means }=\text { up to scattering eqs }
\end{gathered}
$$

$\Omega_{\mathrm{YM} / \mathrm{NLSM}}$ as pushforward of canonical, rigid worldsheet objects:

$$
\Omega_{\mathrm{YM}}^{(n-3)}=\sum_{\text {sol. }} d \mu_{n} \operatorname{Pf}^{\prime} \Psi_{n}(\{\epsilon, p, \sigma\}) \quad \Omega_{\mathrm{NLSM}}^{(n-3)}=\sum_{\text {sol. }} d \mu_{n} \operatorname{det}^{\prime} A_{n}(\{s, \sigma\})
$$

\Longrightarrow at this order, $\mathrm{Pf}^{\prime} \Psi_{n}$ (or $\operatorname{det}^{\prime} A_{n}$) is the unique gauge inv. (or Adler zero) worldsheet function, on support of scattering eqs!

Question: why $\mathrm{Pf}^{\prime} \Psi_{n}$ also determines complete superstring amps?

Outlook

- "Factorization Polytopes" : relations to cluster associahedra, gen. permutohedra [Postnikov] \& " MHV leading singularities" [Cachazo]
- Loops : "geometrize" color for loops; ambitwistor strings
- Four Dimensions : "amplituhedron" in momentum space; forms combining helicity amps \& pushforward from twistor string
- Beyond amplitudes: Witten diagrams, cosmological polytopes etc.
- Towards a unified geometric picture for amplitudes \& more

Thank you for your attention!

[^0]: $s 45$

