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Motivations

Scattering Amplitudes: crucial for particle physics, and only known
observable of quantum gravity in asymptotically flat spacetime

Natural holographic question: is there a ”theory at infinity” that
computes S-matrix without local evolution? much harder than in AdS

∂ of AdS = ordinary space with time & locality” =⇒ local QFT

No such luxuries for asymptotics of flat spacetime: no time/locality!
Mystery: what principles a “theory of S-matrix” should be based on?

This is why S-matrix program failed! New strategy in its revival:
look for fundamentally new laws (↔ new mathematical structures)
→ S-matrix as the answer to entirely different kinds of questions
→“discover” unitarity and causality, as derived consequences!
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Geometric structures

Fascinating geometric structures underlying scattering amplitudes
(particles, strings etc.) in some auxiliary space, encouraging this p.o.v.

Mg,n: perturbative string theory, amplitudes = correlators in
worldsheet CFT→ twistor string theory& scattering equations,
similar worldsheet picture without stringy excitations

Generalized G+(k, n) : the amplituhedron for N = 4 SYM

Both geometries have “factorizing” boundary structures: locality and
unitarity naturally emerge (without referring to the bulk)

What questions to ask, directly in the “kinematic space”, to generate
local, unitary dynamics? Avatar of these geometries?
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Amplitudes as Forms

Scattering amps as differential forms on kinematic space→ a new
picture for amplituhedron [Arkani-Hamed, Hugh, Trnka] & much more!

Forms on momentum twistor space “bosonize” superamplitude in
N = 4 SYM: replacing ηi by dZi =⇒ Ω

(4k)
n for NkMHV tree

(tree) Ampliuehedron = “positive region” ∩ 4k-dim subspaces
Ω

(4k)
n |subspace = canonical form of positive geometry [Arkani-Hamed, Bai, Lam]

Same for momentum-space forms combining helicity amps (|h| ≤ 1)

This talk: identical structure for wide variety of theories in any dim:

Bi-adjoint φ3 from kinematic and worldsheet associahedra
“Geometrize” color & its duality to kinematics, YM/NLSM etc.

Song He (ITP-CAS) Scattering Forms from Geometries April 2018 4 / 25



Kinematic Space

The kinematic space, Kn , for n massless momenta pi (D ≥ n−1) is
spanned by Mandelstam variables si j ’s subject to

∑
j 6=i si j = 0,

thus dimKn =
(
n
2

)
− n = n(n−3)

2 ; for any subset I , sI =
∑

i<j∈I si j

Planar variables si,i+1,··· ,j for an ordering (12 · · ·n) are dual to
n(n−3)/2 diagonals of a n-gon with edges p1, p2, · · · , pn
A planar cubic tree graph consists of n− 3 compatible planar variables
as poles, and it is dual to a full triangulation of the n-gon

Claim: all the n(n−3)
2 planar variables form a basis of Kn

e.g. {s12 = s, s23 = t} for K4 , {s12, s23, s34, s45, s51} for K5 ,
{s12, · · · , s61, s123, s234, s345} for K6
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The Associahedron

The associahedron polytope encodes combinatorial “factorization”:
each co-dim d face represent a triangulation with d diagonals or
planar tree with d propagators (vertices↔ planar cubic trees)

Universal factorization structures of any massless tree amps (in
particular φ3), but how to realize it directly in kinematic space?
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Kinematic Associahedron

Positive region ∆n: all planar variables si,i+1,··· ,j ≥ 0 (top-dimension)

Subspace Hn: −si j = ci,j as positive constants, for all non-adjacent
pairs 1 ≤ i, j < n; we have (n−2)(n−3)

2 conditions =⇒ dimHn = n−3.

Kinematic Associahedron is their intersection! An := ∆n ∩ Hn

Proof : si j = si,··· ,j−si,··· ,j−1−si+1,··· ,j+si+1,··· ,j−1 = −ci,j < 0

=⇒ no boundaries for crossing diagonals are allowed, e.g.
s12 = s23 = 0 forbidden (−c1,3 = s13 ≥ 0 leads to contradiction)

Equivalently, one can show An factorizes to AL ⊗AR on every face!
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s+t=c>0

e.g . A4 = {s > 0, t > 0} ∩ {−u = const > 0}

A5 = {s12, · · · , s51 > 0} ∩ {s13, s14, s24 = const < 0}

s45

s12

s34

s15

s23

s12

s123

s45

s56

s34

s234

s61
s345

s23
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Planar Scattering Forms

The planar scattering form for ordering (12 · · ·n) is a sum of rank-(n−3)
d log forms for Catn−2 planar cubic graphs with sign(g) = ±1:

Ω(n−3)
n :=

∑
planar g

sign(g)

n−3∧
a=1

d log sia,ia+1,··· ,ja

Projectivity: invariant under local GL(1) transf. si,··· ,j → Λ(s)si,··· ,j

=⇒ Sign-flip rule: sign(g) = −sign(g′) for any two planar graphs
g, g′ related by a mutation, i.e. exchange of channel in a 4pt subgraph

g g′1
2

3

4

1
2

3

4

567

8

567

8

s1,2,3

s2,3,4,5
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Projectivity is equivalent to requiring that the form only depends on
ratios of variables, e.g. Ω

(1)
4 = ds

s −
dt
t = d log s

t and

Ω
(2)
5 = ds12

s12
∧ ds34

s34
+ ds23

s23
∧ ds45

s45
+ · · ·+ ds51

s51
∧ ds23

s23

= d log s12
s23
∧ d log s12

s45
+ d log s12

s51
∧ d log s34

s23

Ω
(2)
6 =

∑14
g=1± ∧ (d log s)3 =

∑
± d log ratio′s

It follows immediately that Ω(n−3) is cyclically invariant up to a sign
i→ i+1: Ω

(n−3)
n → (−1)n−3 Ω

(n−3)
n , and it factorizes correctly e.g.

s1,··· ,m → 0 : Ωn → Ωm+1 ∧ d log s1,··· ,m ∧ Ωn−m+1

Projectivity is a remarkable property of Ω
(n−3)
n , not true for each

diagram or any proper subset of planar Feynman diagrams.
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Canonical Form of An

Unique form of any positive geometry= “volume” of the dual: Ω(A)
has d log singularities on all boundaries ∂A with Res = Ω(∂A)

For simple polytopes:
∑

v ± ∧ d logF for faces F = 0 adjacent to v

Canonical form of An = Pullback of Ωn to Hn ∝ planar φ3 amplitude!

e.g . Ω(A4) = Ω
(1)
4 |H4 = (dss −

dt
t )|−u=c>0 = (1s + 1

t ) ds

Ω(A5) = Ω
(2)
5 |H5 =

(
1

s12s34
+ · · ·+ 1

s51s23

)
ds12 ∧ ds34

Ω(An) =
∑

sgn(g) ∧ d log si,··· ,j(s, c) = dn−3s m(12 · · ·n|12 · · ·n)

Similarly for m(α|β): “volume” of degenerate An (faces at infinity)

Song He (ITP-CAS) Scattering Forms from Geometries April 2018 11 / 25



Triangulations & New Rep. of φ3 Amps

Geometric picture: Feynman-diagram expansion = triangulation of
the dual into Catn−2 simplices by introducing the point at ”infinity”

Triangulate the dual or itself in other ways→ new rep. of φ3 amps!

Ω(A5) = d2s ( 1
s12s34

+ · · ·+ 1
s51s23

)

= d2s
(
s12+s51
s12s34s51

+ s12+s51
s12s51s23

+ s12−s45+s23
s12s23s45

)
= sum of 3 triangles of A5 itself

Similar to “local” or “BCFW” triangulations of the amplituhedron:
manifest new symmetries of φ3 obscured by Feynman diagrams!
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Wordsheet Associahedron

A well-known associahedron: minimal blow-up of the open-string
worldsheetM+

0,n := {σ1 < σ2 < · · · < σn}/SL(2,R) [Deligne, Mumford]

This is non-trivial in σ’s but becomes manifest e.g. using cross ratios

The canonical form ofM+
0,n is the “Parke-Taylor” form [see also Mizera]

ωWS
n :=

1

vol [SL(2)]

n∏
a=1

dσa
σa−σa+1

:= PT(1, 2, · · · , n) dµn

Beautifully “planar scattering form” ofM+
0,n in cross-ratio space.

How to connect old and new: M+
0,n ↔ An and their canonical forms?
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Scattering Equations as a Diffeomorphism

1
2

3

45

6
scattering equations−−−−−−−−−−−−−−→

as a map fromM0,n to An

With pullback to Hn (−si,j = ci,j), scattering equations
(
∑

b 6=a
sa b

σa−σb = 0) provide a one-to-one map fromM+
0,n to An:

sa,a+1 = σa,a+1

∑
1<i+1≤a≤j<n

ci,j
σi,j

for a = 1, . . . , n−3 (σn →∞)

and similarly for sa,a+1,··· ,b: positive iff {σ} ∈ M+
0,n (on Hn)!

One (out of (n−3)!) positive solution iff positive kinematics {s} ∈ ∆n.
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Pushforward from Worldsheet

Theorem: diffeomorphism A→ B =⇒ pushforward Ω(A)→ Ω(B)

y = f(x) as diffeom. from A to B : Ω(B)y =
∑

x=f−1(y)

Ω(A)x

=⇒ canonical form of An is the pushforward of ωWS
n by summing

over (n−3)! sol. of scattering eqs. (equivalent to CHY)

∑
sol.

dµn PT(α)|H(α) = m(α|α) dn−3s or
∑
sol.

ωWS
n (α) = Ω

(n−3)
φ3

(α)

General :
∑
sol.

dµnIn := Ωn[I] → Ωn[I]|Hα = dn−3s

∫
CHY

PT(α)×In
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General Scattering Forms

General Scattering Forms: sum over all cubic graphs with numerators

Ω[N ] =
∑
g

N(g)

n−3∧
I=1

d log sI , e.g . Ns d log s+Nt d log t+Nu d log u

Ng are “kinematic numerators” that can depend on other data, for all
(2n−5)!! cubic tree graphs, e.g. 15 for n = 5 and 105 for n = 6.

Ωφ3 : Ng = 0 for non-planar graphs and Ng = ±1 for planar ones.

Natural Qs: what constraints can we put on these forms and what
physics information do they contain? How can we relate them to
scattering amplitudes of some theories? → Projectivity is the key!
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Projectivity and BCJ duality

Projectivity: require Ω[N ] to be well-defined in projectivized space
(treating sI ’s independently), i.e. covariant under sI → Λ(s)sI

=⇒ kinematic numerators can be chosen to satisfy Jacobi identities

N(gS) +N(gT ) +N(gU ) = 0 , e.g . Ns +Nt +Nu = 0

I1 I2

I3I4

I1 I4

I2I3

I1 I3

I4I2

S = sI1I2 T = sI2I3 U = sI1I3

gS gT gU

A “geometric” origin of BCJ duality [BCJ 08], but how to get amps?
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Color is Kinematics I

1

2 3 4

5

fa1a2bf ba3cf ca4a5 ↔

1

2 3 4

5

ds12 ∧ ds45

Duality between color factors and differential forms on Kn for cubic
graphs: C(g) and W (g) satisfy the same algebra! Recall

C(g) :=

n−2∏
v=1

favbvcv =⇒ C(gS)+C(gT )+C(gU ) = 0 , ∀ triplet

Claim : W (g) := ±
n−3∧
I=1

dsI =⇒ W (gS)+W (gT )+W (gU ) = 0
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This is a basic fact of Kn directly follows from mom-conservation:

sI1I2 +sI2I3 +sI1I3 = sI1 +sI2 +sI3 =⇒ (dsI1I2 +dsI2I3 +dsI1I3)∧· · · = 0

Fundamental link between color & kinematics (forms on Kn) =⇒
Duality between color-dressed amps and scattering forms:

Mn[N ] ↔ Ω(n−3)[N ]

Mn[N ] =
∑

cubic g

N(g)C(g)
∏
I∈g

1

sI

Ω(n−3)[N ] =
∑

cubic g

N(g)W (g)
∏
I∈g

1

sI

Scattering forms are color-dressed amps without color factors!
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Color is Kinematics II

More is true for U(N)/SU(N): partial amps as pullback of forms

trace decomp. Mn[N ] =
∑

β∈Sn/Zn

Tr(β(1), . . . , β(n))Mn[N ;β]

=⇒ partial amp. Mn[N ;β] =
∑

β−planar g

N(g|β)
∏
I∈g

1

sI

Completely parallel: Partial amplitude = pullback of scattering form
to subspace H(β) = {sβ(i)β(j) = const.} for non-adjacent 1 ≤ i < j < n

Ω(n−3)[N ]|H[β] =

 ∑
β-pl. g

N(g|β)
∏
I∈g

1

sI

 dV [β] = Mn[N ;β]dV [β]
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Gravity Amplitudes and Double Copy

How about theories without color, such as gravity amplitude? A
0-form or equivalently top form, Ωtop = Mn × dn(n−3)/2s

Define dual forms for every scattering form: e.g. the dual for φ3

Ω̃φ3(1, 2, · · · , n) :=
∧

1≤i<j−1<n−1
dsi,j ,

=⇒ pullback to partial amp, e.g. MYM
n (α)dn(n−3)/2s = ΩYM ∧ Ω̃φ3(α)

Natural language for BCJ double-copy : top form for e.g. gravity is
literally the (wedge) product of a ΩYM and its dual Ω̃YM:

Ωtop
GR = Ω

(n−3)
YM ∧ Ω̃

(n−2)(n−3)/2
YM = dn(n−3)s

∑
g

∏
I∈g

N(g)Ñ(g)

sI
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Scattering Forms for Gluons and Pions

Permutation invariant forms encoding full amps of gluon/pion
scattering (e.g. can be directed constructed from “Feynman rules”)→
Remarkably rigid, fundamental objects for YM & NLSM (lowest dim):

Ω
(n−3)
YM/NLSM =

(2n−5)!!∑
g

NYM/NLSM(g)

n−3∧
a=1

d logSIa

NNLSM({s}) of degree-(n−2) in si,j ; NYM({ε, p}) from contractions of
momenta & polarizations with no more than (n−2) (εi · pj)
(rep. dependent and can be chosen to satisfy Jacobi) . For n = 4:

Ω
(1)
NLSM = sdt− tds = tdu− udt = uds− sdu

Ω
(1)
YM = T8(ε,p)

stu Ω
(1)
NLSM = NYM(g1234)d log s

t +NYM(g1324)d log u
t
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Uniqueness of YM and NLSM Forms

Gauge invariance: ΩYM invariant under every shift εµi → εµi + αpµi

Adler zero: ΩNLSM vanishes under every soft limit pµi → 0

Key: forms are projective =⇒ unique ΩYM and ΩNLSM!

Stronger than the amp “uniqueness theorem” [Arkani-Hamed, Rodina, Trnka]:
(n−1)! parameters for amp vs. unique form up to an overall const.

Proof: (1). Ω
(n−3)
ansatz =

∑
π∈Sn−2

W (gπ)An(π) with “partial amps” An(π)
sum over π-planar graphs
(2). An(π) = απMn(π) by amp “uniqueness”, and απ = α since
An(π)’s must satisfy BCJ relations by projectivity!

Direct proof/deeper reason for uniqueness of forms? Extended
positive geometry for gluons (“geometrize” polarizations) & pions ?
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YM and NLSM Forms from the Worldsheet

Despite lack of geometric meaning, non-d log projective forms can
also be obtained as pushforward of non-d log worldsheet forms

Ω[N ] =
∑

πN(gπ)Ωφ3(π) =⇒ Ω[N ] =
∑

sol. ω[N ] ,

ω[N ] ' dµn
∑

πN(gπ) PTn(π) , ' means = up to scattering eqs

ΩYM/NLSM as pushforward of canonical, rigid worldsheet objects:

Ω
(n−3)
YM =

∑
sol.

dµn Pf ′Ψn({ε, p, σ}) Ω
(n−3)
NLSM =

∑
sol.

dµn det′An({s, σ})

=⇒ at this order, Pf ′Ψn (or det′An) is the unique gauge inv. (or
Adler zero) worldsheet function, on support of scattering eqs!

Question: why Pf ′Ψn also determines complete superstring amps?
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Outlook

“Factorization Polytopes” : relations to cluster associahedra, gen.
permutohedra [Postnikov] & “ MHV leading singularities” [Cachazo]

Loops : “geometrize” color for loops; ambitwistor strings

Four Dimensions : “amplituhedron” in momentum space; forms
combining helicity amps & pushforward from twistor string

Beyond amplitudes: Witten diagrams, cosmological polytopes etc.

Towards a unified geometric picture for amplitudes & more

Thank you for your attention!
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