The String Worldsheet in AdS as Candidate Dual of SYK Model?

by Yun-Long Zhang

Asia Pacific Center for Theoretical Physics
APCTP@Pohang, Korea

Based on: arXiv:1709.06297

by

$$
\mathrm{S}_{\mathrm{Sch}}=\frac{1}{2 g_{s}^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left[\left(\frac{\ddot{\mathrm{~g}}}{\dot{\mathrm{~g}}}\right)^{2}-\left(\frac{2 \pi}{\beta}\right)^{2}(\dot{\mathrm{~g}})^{2}\right]
$$

R.-G. Cai (ITP/CAS, Beijing)
S.-M. Ruan (Perimeter, Waterloo)
R. -Q. Yang (KIAS, Seoul)
Y.-L. Zhang (APCTP, Pohang)
@IPMU, Apr.5, 2018

Motivations

Schwarzian Action Effective theory of SYK

Chaos Bound
Effective Actions Symmetries

Einstein-Hilbert Action 2D Dilaton Gravity

Figure Credit: Sachdev \&Balents Logo of New Horizon Prize

Nambu-Goto Action?
Worldsheet Horizon in AdS

The SYK Model (Sachdev-Ye-Kitaev)

The SYK Hamiltonian is
S. Sachdev and J. Ye, PRL 70, 3339 (1993)
A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

$$
H_{S Y K_{4}}=j_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}
$$

$$
\left\langle j_{a b c d}^{2}\right\rangle=\frac{J^{2}}{N^{3}}
$$

Majorana fermions in QM are matrices $\psi_{\text {a }}$ satisfying

Credite refer to: Sachdev \& Standford

Higher Dimensional Generalization

Coupled SYK and AdS4
charge

$$
\mathrm{AdS}_{2} \times R^{2}
$$

$$
d s^{2}=\left(d \zeta^{2}-d t^{2}\right) / \zeta^{2}+d \vec{x}^{2}
$$

$$
\text { Gauge field: } A=(\mathcal{E} / \zeta) d t
$$

$S=\int d^{4} x \sqrt{-\hat{g}}\left(\hat{\mathcal{R}}+6 / L^{2}-\frac{1}{2} \sum_{i=1}^{2}\left(\partial \hat{\varphi}_{i}\right)^{2}-\frac{1}{4} \hat{F}_{\mu \nu} \hat{F}^{\mu \nu}\right)$,

A Theory of Strange Metal Dual Theory of Gravity on AdS2 Fastest Possible Chaos

$$
\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j}
$$

$$
H=\sum_{i_{1}, \cdots, i_{4}} J_{i_{1} i_{2} i_{3} i_{4}} \psi_{i_{1}} \psi_{i_{2}} \psi_{i_{3}} \psi_{i_{4}}
$$

Figure Credit: Sachdev \& Balents

Chaos Bound \& Butterfly Effects

Growth of Correlator

$$
\left.\left.\langle |\left\{C(x, t) C^{\dagger}(0,0)\right\}\right|^{2}\right\rangle \sim \exp \left[\lambda_{L}\left(t-|x| / v_{B}\right)\right]
$$

$$
\begin{array}{cl}
\text { Lyapunov Exponent } & \lambda_{L}=2 \pi k_{B} T / \hbar \\
\text { Butterfly Velocity } & v_{B} \sim T^{1 / 2} \\
\text { Diffusion Constant } & D_{c}=v_{B}^{2} / \lambda_{L}
\end{array}
$$

Schwarzian Action

$$
\begin{array}{cc}
\left\langle Z_{S Y K}\right\rangle=\int d G d \Sigma \exp \left(-N S_{S c h}+\ldots\right) & S_{J T}=-S_{0}-\frac{1}{g}\left[\int_{\text {Bulk }} \sqrt{g} \phi(R+2)+2 \phi_{b} \int_{\text {Bdy }} \mathcal{K}\right] \\
\text { Schwarzian Action } & \text { Jackiw-Teitelboim Action } \\
\text { Low Energy Effective Action } & \text { (2D Dilaton Gravity) }
\end{array}
$$

$$
\mathbf{S}_{\mathrm{Sch}}:=-\frac{1}{g_{s}^{2}} \int_{0}^{\beta} \mathrm{d} \tau\{\mathbf{f}(\tau), \tau\}, \quad \frac{1}{g_{s}^{2}} \equiv \frac{\alpha_{S} N}{\mathcal{J}},
$$

$$
S_{J T}=-S_{0}-\frac{2 \phi_{r}}{g} \int_{0}^{\beta} d \tau\{\mathbf{f}(\tau), \tau\}
$$

Fast scrambling in holographic EPR pair

by Keiju Murata (Keio U.) 1708.09493, [Aug 30]

4-point OTOC $\sim e^{\lambda_{L} t}$ (Out-of-Time-Order Correlator)

Lyapunov Exponent
$\lambda_{L}=2 \pi T_{U}$
Unruh Temperature

(a) $\delta a>0$

(b) $\delta a<0$

Chaotic strings in AdS/CFT

J. de Boer, E. Llabrés, J. Pedraza, D. Vegh

Amsterdam \&Utrecht U. 1709.01052 [Sep.4]
AdS Black Brane

$$
\begin{aligned}
& d s^{2}=-r^{2} f(r) d t^{2}+\frac{d r^{2}}{r^{2} f(r)}+r^{2} d x^{2}, \\
& f(r)=1-\left(\frac{r_{H}}{r}\right)^{d-1} .
\end{aligned}
$$

Induced AdS2 Wormhole

$$
d s_{w s}^{2}=-\frac{4 d u d v}{(1+u v)^{2}}
$$

Action

$$
S_{\mathrm{NG}}=-\frac{1}{\pi \alpha^{\prime}} \int d u d v \sqrt{\frac{1-r_{H}^{2}(1-u v)^{2} \partial_{u} X \partial_{v} X}{(1+u v)^{4}}} .
$$

4-point OTOC

$$
f(t)=\frac{\langle V W(t) V W(t)\rangle}{\langle V V\rangle\langle W W\rangle} \quad f(t)=1-\frac{f_{0}}{N^{2}} e^{\lambda_{L} t}+\mathcal{O}\left(N^{-4}\right)
$$

Lyapunov Exponent $\quad \lambda_{L}=2 \pi T_{H}$
Hawking Temperature

$V\left(t_{3}\right) W\left(t_{4}\right)|\Psi\rangle$

$W\left(t_{2}\right) V\left(t_{1}\right)|\Psi\rangle$

String World Sheet as one Candidate Dual of Schwarzian Theory

by R.-G. Cai, S.-M. Ruan, R. -Q. Yang, Y.-L. Zhang arXiv:1709.06297 [Sep 19]

Nambu-Goto Action

$$
S_{\mathrm{NG}}=-\frac{1}{2 \pi \alpha^{\prime}} \int d \sigma d \tau \sqrt{-\operatorname{det} h_{a b}},
$$

Schwarzian Action

$$
\mathrm{S}_{\mathrm{Sch}}=\frac{1}{2 g_{s}^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left[\left(\frac{\ddot{\mathrm{~g}}}{\dot{\mathrm{~g}}}\right)^{2}-\left(\frac{2 \pi}{\beta}\right)^{2}(\dot{\mathrm{~g}})^{2}\right]
$$

AdS Boundary

Renormalized Nambu-Goto Action of the WorldSheet

Black Brane Background $\quad d s^{2}=-r^{2} f(r) d t^{2}+\frac{d r^{2}}{r^{2} f(r)}+r^{2} d x^{2}, \quad f(r)=1-\frac{r_{r_{2}^{2}}^{2}}{r^{2}}\left[1+q^{2} \ln \left(\frac{r}{r_{h}}\right)\right]$

Induced Metric on WorldSheet ${ }^{d s_{\text {ws }}^{2}=}=h_{a b} d \sigma^{a} \mathrm{~d} \sigma^{b}=-r^{2} f(r) d t^{2}+\frac{\mathrm{d} r^{2}}{r^{2} f(r)}$,

Nambu-Goto Action
After Perturbations

$$
S_{\mathrm{NG}}=-\frac{1}{2 \pi \alpha^{\prime}} \int d \sigma d \tau \sqrt{-\operatorname{det} h_{a b}}
$$

Counter-term

Renormalized action
... Final On Shell Formula

$$
S_{\mathrm{ct}}:=\frac{1}{2 \pi \alpha^{\prime}} \int_{r=r_{c}} \sqrt{-\gamma} \mathrm{d} t .
$$

$$
S_{\mathrm{ren}}^{(2)}:=S_{\mathrm{NG}}^{(2)}+S_{\mathrm{ct}}^{(2)}
$$

$$
\mathbf{S}_{\mathrm{ren}}^{(2)}=\frac{1}{2 g_{s}^{2}} \int_{0}^{\mathrm{B}} \mathrm{~d} \tilde{\tau}\left[(\ddot{\tilde{\varepsilon}})^{2}-\left(\frac{2 \pi}{\mathrm{~B}}\right)^{2}(\dot{\tilde{\varepsilon}})^{2}\right]
$$

$$
S_{\mathrm{NG}} \simeq-\frac{1}{2 \pi \alpha^{\prime}} \int \mathrm{d} r \mathrm{~d} t\left[1-\frac{1}{2 f(r)}(\dot{\mathrm{x}})^{2}+\frac{r^{4} f(r)}{2}\left(\mathrm{x}^{\prime}\right)^{2}\right]
$$

Holographic EPR Pair: Classical <-> Quantum?

$$
\begin{aligned}
d s^{2}=\frac{R^{2}}{w^{2}} & {\left[-d t^{2}+d w^{2}+\left(d x^{2}+d y^{2}+d z^{2}\right)\right] } \\
|z| & =b \sqrt{1-\tilde{r}} e^{\tilde{z}} \cosh \tilde{\tau} \\
t & =b \sqrt{1-\tilde{r}} e^{\tilde{z}} \sinh \tilde{\tau} \\
w & =b \sqrt{\tilde{r}} e^{\tilde{z}}
\end{aligned}
$$

Measurements

$$
d s^{2}=\frac{R^{2}}{b^{2} \tilde{u}}\left[-f(\tilde{u}) d \tau^{2}+\frac{b^{2}}{4 \tilde{u}} \frac{d \tilde{u}^{2}}{f(\tilde{u})}+d \tilde{z}^{2}+\left(d x^{2}+d y^{2}\right) \exp (-2 \tilde{z} / b)\right]
$$

Holographic Schwinger effect J.Sonner(1307.6850), PRL111.211603

Holographic EPR Pair Karch \& Jensen (1307.1132) PRL 111.211602

Holographic SK Correlators from String Worldsheet

$$
\begin{aligned}
Z_{E P R} & \equiv\left\langle e^{\frac{\mathrm{i}}{\hbar} S_{E P R}}\right\rangle \stackrel{A d S / C F T}{\simeq} e^{\frac{i}{\hbar} S_{N G}\left[\tilde{q}_{i}^{I}, \tilde{q}_{j}^{J}\right]} \\
\mathrm{i} G_{I J}^{i j} & \equiv \frac{\hbar^{2}}{\mathrm{i}^{2}} \frac{\delta^{2} \ln Z_{E P R}}{\delta\left(\tilde{q}_{i}^{I}\right) \delta\left(\tilde{q}_{j}^{J}\right)} \simeq \frac{\delta^{2} S_{N G}\left[\tilde{q}_{i}^{I}, \tilde{q}_{j}^{J}\right]}{\delta\left(\tilde{q}_{i}^{I}\right) \delta\left(\tilde{q}_{j}^{J}\right)}
\end{aligned}
$$

$$
S_{N G} \simeq-\frac{\sqrt{\lambda}}{2 \pi} \int \frac{\mathrm{~d} \tilde{\tau} \mathrm{~d} \tilde{r}}{2 \tilde{r}^{3 / 2}}\left\{1+\left[2 \tilde{r} f(\tilde{r}) \tilde{q}_{i}^{\prime} \tilde{q}_{j}^{\prime}-\frac{1}{2 f(\tilde{r})} \dot{\tilde{q}}_{i} \dot{\tilde{q}}_{j}\right] h^{i j}\right\}
$$

EOMs $\quad \partial_{\tilde{r}}\left(\frac{2 f \tilde{q}_{i}^{\prime}}{\tilde{r}^{1 / 2}}\right)-\partial_{\tilde{\tau}}\left(\frac{\dot{\tilde{q}}_{i}}{2 f \tilde{r}^{3 / 2}}\right)=0$.

$$
\begin{array}{rlrl}
S_{N G} & {\left[\tilde{q}_{i}^{I}, \tilde{q}_{j}^{J}\right]=-\frac{1}{2} \int \frac{d \omega}{2 \pi}\left\{\left[\tilde{q}_{i}^{A}(-\omega) \tilde{q}_{j}^{B}(\omega)+\tilde{q}_{i}^{B}(-\omega) \tilde{q}_{j}^{A}(\omega)\right]\right.} & \mathrm{i} G_{A B}^{i j}(\omega) & \equiv \frac{S_{N G}\left[\tilde{q}_{i}^{I}, \tilde{q}_{j}^{J}\right]}{\delta\left(\tilde{q}_{i}^{A}\right) \delta\left(\tilde{q}_{j}^{B}\right)}=\frac{-2 e^{-\omega /\left(2 T_{a}\right)}}{1-e^{-\omega / T_{a}}} \operatorname{Im} G_{\mathcal{R}}^{i j}(\omega) \\
& \times \sqrt{n_{\omega}\left(1+n_{\omega}\right)}\left[G_{\mathcal{A}}^{i j}(\omega)-G_{\mathcal{R}}^{i j}(\omega)\right] & G_{R}^{i j}(\omega) & =-\left.\frac{2 T_{0} L^{2}}{b^{2} \tilde{r}^{1 / 2}} f(\tilde{r}) Y_{-\omega}(\tilde{r}) \partial_{\tilde{r}} Y_{\omega}(\tilde{r}) \delta^{i j}\right|_{\tilde{r} \rightarrow 0} \\
& +\tilde{q}_{i}^{A}(-\omega) \tilde{q}_{j}^{A}(\omega)\left[(1+n) G_{\mathcal{R}}^{i j}(\omega)-n G_{\mathcal{A}}^{i j}(\omega)\right] & & =-\frac{a^{2} \sqrt{\lambda}}{2 \pi} \mathrm{i} \omega \delta^{i j}+O\left(\omega^{2}\right), \\
& \left.+\tilde{q}_{i}^{B}(-\omega) \tilde{q}_{j}^{B}(\omega)\left[n G_{\mathcal{R}}^{i j}(\omega)-(1+n) G_{\mathcal{A}}^{i j}(\omega)\right]\right\}, & T_{a} & =\frac{\hbar a}{2 \pi k_{B} c} \\
\text { Ref: J.-W. Chen, S.-C. Sun, Y.-L. Zhang [arXiv:1612.09513] } & \exp \left[-\frac{\hbar \omega}{k_{B} T_{a}}\right]
\end{array}
$$

SK Correlators

Constructing Bell inequality for Holographic EPR

 J.-W. Chen, S.-C. Sun, Y.-L. Zhang [arXiv:1612.09513]$$
\begin{gathered}
G_{A B}^{i j}(\omega)=\frac{2 \mathrm{i} e^{-\omega / 2 T_{U}}}{1-e^{-\omega / T_{U}}} \operatorname{Im} G_{R}^{i j}(\omega) \\
\mathrm{i} G_{A B}^{i j}(\tau, x)=\left\langle\mathcal{F}_{A}^{i}(\tau, x) \mathcal{F}_{B}^{j}(0)\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& A_{\mathcal{F}}=\left(\cos \theta_{A} \mathcal{F}_{A}^{x}+\sin \theta_{A} \mathcal{F}_{A}^{y}\right) /\left\langle\mathcal{F}_{A}^{x} \mathcal{F}_{B}^{x}\right\rangle^{1 / 2}, \\
& B_{\mathcal{F}}=\left(\cos \theta_{B} \mathcal{F}_{B}^{x}+\sin \theta_{B} \mathcal{F}_{B}^{y}\right) /\left\langle\mathcal{F}_{A}^{x} \mathcal{F}_{B}^{x}\right\rangle^{1 / 2},
\end{aligned}
$$

Bell's Theorem(CHSH formula)

$$
\begin{aligned}
& \left\langle C_{\mathcal{F}}\right\rangle=\left\langle A_{\mathcal{F}} B_{\mathcal{F}}\right\rangle+\left\langle A_{\mathcal{F}} B_{\mathcal{F}}^{\prime}\right\rangle+\left\langle A_{\mathcal{F}}^{\prime} B_{\mathcal{F}}\right\rangle-\left\langle A_{\mathcal{F}}^{\prime} B_{\mathcal{F}}^{\prime}\right\rangle \\
& =\cos \theta_{A B}+\cos \theta_{A B^{\prime}}+\cos \theta_{A^{\prime} B}-\cos \theta_{A^{\prime} B^{\prime}} . \\
& \left\langle A_{\mathcal{F}} B_{\mathcal{F}}\right\rangle=\cos \left(\theta_{A}-\theta_{B}\right) \equiv \cos \theta_{A B} . \\
& \theta_{A B}=\theta_{A B^{\prime}}=\theta_{A^{\prime} B}=\pi / 4, \quad \theta_{A^{\prime} B^{\prime}}=3 \pi / 4
\end{aligned}
$$

$$
\mathrm{i} G_{A B}^{x x}=\mathrm{i} G_{A B}^{y y}=\frac{\sqrt{\lambda} a^{3}}{2 \pi^{2}}, \quad \mathrm{i} G_{A B}^{x y}=\mathrm{i} G_{A B}^{y x}=0
$$

$$
\left\langle C_{\mathcal{F}}\right\rangle=2 \sqrt{2} .
$$

Violate The Bound for local system $|\langle C\rangle| \leq 2$

$E R=E P R$ (Wormhole=Entangled Pair) ?

ER bridge(Einstein-Rosen): Non-traversable wormhole EPR pair of maximally entangled black holes

$$
H=H_{R}+H_{L} .
$$

$$
|\Psi(t)\rangle=\sum_{n} e^{-\beta E_{n} / 2} e^{-2 i E_{n} t}|\bar{n}, n\rangle
$$

EPR pair of two black holes in a particular entangled state
How about Traversable wormhole?

Traversable Wormholes or Black Holes?

Figure Credit: ScienceNews

Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?
V. Cardoso, E. Franzin, P. Pani [PRL. 116, 171101 (2016)]

Traversable wormhole <-> Two Coupled SYK?

 by Maldacena \& Qi [1804.00491]$$
H_{\text {total }}=H_{\mathrm{L}, \mathrm{SYK}}+H_{\mathrm{R}, \mathrm{SYK}}+H_{\mathrm{int}}, \quad H_{\mathrm{int}}=i \mu \sum_{j} \psi_{L}^{j} \psi_{R}^{j}
$$

$$
S=N \int d u\left\{-\frac{\alpha_{S}}{\mathcal{J}}\left(\left\{\tan \frac{t_{l}(u)}{2}, u\right\}+\left\{\tan \frac{t_{r}(u)}{2}, u\right\}\right)+\mu \frac{c_{\Delta}}{(2 \mathcal{J})^{2 \Delta}}\left[\frac{t_{l}^{\prime}(u) t_{r}^{\prime}(u)}{\cos ^{2} \frac{(u) u)-t_{r}(u)}{2}}\right]^{\Delta}\right\}
$$

(a)

(b)

De-Coherent Phase Transition?

