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Theory of Big-J

• In order to solve quantum gravity it is inevitable that we
understand strongly-coupled QFT systematically.

• Semiclassical analysis can sometimes help us do so and if you
are lucky you even have a weakly-coupled Lagrangian
description.

• Giving system large charges, J, we can sometimes analyse
strongly-coupled theory in the semi-classical regime, where the
full Lagrangian is then weakly coupled in units of 1/J.

• We consider strongly-coupled QFT on the spatial slice S2 with
radius R (or T 2 with periods R1,2) in this talk. We give charge
density ρ to the state and mostly set R = 1 by rescaling.
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Theory of Big-J

• Let me tell you how Big-J works. You give large dimensionful
VEV to the fields associated with the symmetry. Then there is
a large hierarchy between UV and IR energies.

• In this case, we can expect ΛUV =
√
ρ and ΛIR = 1/R by

dimensional analysis. This happens when the ground state
configuration for the effective Lagrangian is homogeneous.

• Incidentally, this is only an assumption right at this moment,
but it can be shown that this homogeneity assumption is all
consistent in some cases.

• Now, when we take the limit of J ∼ ρ/R−2 →∞, small ratio
of ΛIR/ΛUV should render the theory weakly-coupled!
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RG flow of the O(2) model at large charge

• Let me start with the simplest model of all to be analysed at
large charge, J.

• We consider a theory constructed from a complex field
φ ≡ a× e iχ, which (by fine-tuning or whatever) flows to the
conformal O(2) Wilson-Fischer fixed point in the IR.

• We can break the O(2) symmetry spontaneously by giving
a = |φ| a large dimensionful VEV that goes as

√
ρ� 1 at

Λ = ΛUV =
√
ρ.

• So by scaling everything far below ΛUV, all the quantum
fluctuations are suppressed, and we are left with a classically
scale invariant Lagrangian at leading order in 1/J.

6



RG flow of the O(2) model at large charge

• I will now give you the leading order O(2) invariant IR
Lagrangian, which is also classically conformally invariant,

LIR = −1
2

(∂a)2 − 1
2
κa2(∂χ)2 − h2

12
a6 + ◦ ◦ ◦

• You can also integrate out the a field, whose mass is of order
√
ρ� 1, resulting in

LIR = (const.)|∂χ|3 + ◦ ◦ ◦

• By virtue of Noether theorem, we have ρ ∝ |∂χ|2 and
J = 4πR2ρ, for homogeneous configurations, like the lowest
one.
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Sorting operators at Big-J

• You can list classically conformal invariant operators in the
effective action.

• After integrating out the a field, you are free to put its mass
to the denominator of effective operators, which is, in this
case, |∂χ|.
• In order to do this, we have to know the EOM and its classical

solution for χ. Because the lowest energy solution of the
EOM of χ is homogeneous (either by direct computation or by
an argument given later), we can solve it for χ = ωt.

• Here, we have ω ∝
√
J.
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Operator dimension at large charge

• According to the operator listing,

LIR = c3/2|∂χ|3 + c1/2Ric3|∂χ|+ O(J−1/4)

This IR Lagrangian is universal when the theory is in the WF
fixed point.This universality class even includes N = 2 SUSY
theory with superpotential W ∝ Φ3.

• Let us calculate the operator dimension at large charge.

• The classical piece is given by just

k3/2J
3/2 + k1/2J

1/2 + O(J−1/4)

• Notice this leading J-scaling, 3/2.This is far above the BPS
bound!What does this mean holographically? It might point
that extremal RN-AdS black holes can be unstable.
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Operator dimension at large charge

• The leading quantum piece of the operator dimension is given
by the one-loop vacuum contribution from the O(J3/2) piece.

• This gives

E0 = −0.094

• There were no counter-terms available at O(J0), so this is the
only universal contribution to the dimension at this order. We
therefore get

k3/2J
3/2 + k1/2J

1/2 − 0.094 + O(J−1/4)
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Comments

• By separating χ = χ0 + |∂χ|−1/2χ̂ into VEV and (normalised)
fluctuations, we have

Lleading/bχ = |∂χ3
0|+

3
2
χ̂

(
∂2
t +

1
2
4S2

)
χ̂+ ◦ ◦ ◦

• So you can see the speed of the GB is 1/
√
2 times the speed

of light. This follows directly from conformal symmetry.

• All the states whose dimensions are O(1) above Big-J ground
state can also be written down – at spin `, the energy of the
excited state increases by ∆E (`) =

√
`(`+ 1)/2

• Therefore the spin ` = 1 state is just the descendent of the
ground state. Others are just new primaries.
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Monte Carlo numerics

• Now you get a nontrivial universal number, you should check
this numerically too.

• You can use Monte Carlo simulations to verify the sum rule
for the operator dimension.

• The result, done by Banerjee, Chandrasekharan, and Orlando
(one of the authors of the original O(2) paper!), suggests the
remarkable fit even up to J ∼ 1!
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Monte Carlo numerics

Figure 1: Domenico said on the unit sphere the fitted number is
k3/2 = 1.195/

√
4π and k1/2 = 0.075

√
4π. E0 ≈ −0.094 comes out right.
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Bootstrap at large charge?

• It is clear from the construction that the straightforward
numerical bootstrap program slows down at larger charges.

• Analytic bootstrap should be interesting, but not exactly
parallel with analytic bootstrap at large spin. The theory is not
going to be (generalised) free at leading order (the dimension
scales as J3/2 instead of J). But maybe vacuum moduli can
help as in this case the theory is liberated at large charge.

• Recently Jafferis, Mukhametzhanov and Zhiboedov have put
out a nice paper studying Big-J bootstrap.

• It shows that the EFT we derived is the only possible EFT
when there is only one Regge trajectory (O(1) excitations
with spin more than 2, c.f., [Caron-Huot]).
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Comments on cases with moduli space of vacua

• When there is a moduli space of vacua, the story is totally
different.
• The curvature of the moduli space vanishes, so that we just

have free Lagrangian as the leading-order effective Lagrangian.
• You can also construct superconformally invariant operators,

to see sub-leading effects.
• You will find leading such operators scaling at O(1/J3),which

is very small. But more importantly, the form of this operator
is (∂φ)4 on flat space,so you can use the Arkani-Hamed’s
argument to derive negative definiteness of the anomalous
dimension on the first non-protected operator(above BPS and
semi-short operators).This means the attractiveness of the
gravitational potential, holographically.

15



Comments on cases with moduli space of vacua

• You can also compute 2n-point functions of BPS operators
using this method.

• We computed such 2n-point functions in D = 4, N = 2
theories with a one-dimensional Coulomb branch.

• The symmetry group is so big it constrains the IR Lagrangian
heavily – there seems to be no contributions, on conformally
flat space, to 2n-point functions aside from the leading and
the Weyl-anomaly pieces.

• This gives us universality to all orders in 1/n perturbative
expansion. Non-perturbative pieces are non-universal and
depends on UV details of the theory.

• Will appear on arXiv tomorrow morning. Stay tuned!

16



Introducion

O(2) model at Big-J

O(4) model at Big-J

Goldstone counting and inhomogeneity

17



Inhomogeneity of the O(4) large charge grouns states

• Now finally we have all the tools to study the cases where the
symmetry algebra has more than one Cartans.

• Why is this important? This is because we used homogeneity
to say that ΛIR is small compared to ΛUV. This was a key
fact establishing the classical scale invariant EFT.

• In the first part of the talk I just set this ansatz and later
proved homogeneity by explicitly computing the classical
ground state configuration.
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Inhomogeneity of the O(4) large charge ground states

• In 2017, Alvarez-Gaume, Loukas, Orlando and Reffert proved
that if we persist in having the homogeneous ground state
configuration at large charge in the O(N) model, you can only
consider cases where you excite only one Cartan of the
symmetry group.
• You can intuitively observe this fact even when you consider

free SU(2) bosonic Lagrangian – In the language of the O(4)

model, when you excite two Cartans by the same amount
• You can then see what operator describes the large charge

ground state with spin 0 – the option is just
∣∣εabqa∂µqb∣∣n,

where q transform as a doublet in SU(2). Classical
configuration cannot be homogeneous on the spatial slices
then.
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Inhomogeneity of the O(4) large charge ground states

• So inhomogeneity really is a problem when you want to study
the large charge expansion of the O(4) theory with generic ρ1

and ρ2, eigenvalues of the charge density matrix.

• Why? If the configuration has the instability towards
inhomogeneity in the scale of the charge density itself,
1/
√
ρ = 1/ΛUV, the EFT is definitely going to break down.

• On the other hand, if it’s leaned towards the IR side, the EFT
is still applicable even for generic charge density ratios,
because you still have the large hierarchy between UV and IR.

• This time, for simplicity, let us put the system on T 2 × R,
where the volume of this torus is V.
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Looking for the O(4) large charge ground states

• Let us now look for the large charge ground state
configuration of the theory.
• It just the same as in the O(2) case. You decompose the

doublet Q appearing in the UV Lagrangian as Q = A× q and
give VEV to A.
• Here we require q†q = 1, so along with the helical ansatz,

let’s parametrise the helical solution as

q =

(
q1

q2

)
=

(
e iω1t sin(p(x))

e iω2t cos(p(x))

)
• The leading IR Lagrangian is

LIR = bq
(
∂q†∂q

)3/2

as you might have already rightly guessed from the O(2) case.
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Looking for the O(4) large charge ground states

• The EOM for this Lagrangian just reduces to the following
equation,

−κ
6

4
=
(
p′(x)2 − V (p(x))

)(
p′(x)2 +

V (p(x))

2

)2

where V (p) = ω2
2 + (ω2

1 − ω2
2) sin2(p)

• When ω1 = ω2, the solution just should come down to a
homogeneous one, for any values of ω.

• So let’s take ω1,2 ∼ O(
√
J) and p′(x) ∼ ω1 − ω2 ∼ O(1),

using which the EOM above can be simplified dramatically,

(p′(x))2 = 2ω2(ω1 − ω2)
(
sin2(p0)− sin2(p(x))

)
where p0 is the maximal value of p(x).
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O(4) large charge ground states

• This differential equation is actually the same as the EOM for
a classical pendulum problem in a uniform gravitational field.
And, we know the answer to this type of differential equation
very well.

• The solution to the EOM writes

sin(p(x))

sin(p0)
= sn

(x
`

; sin(p0)
)

where `is proportional to the aptial period of the solution.
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Ground state has preference for homogeneity

• You can now use this solution to the EOM to compute the
energy associated with each solution with different periods, or
equivalently, different `.

• The explicit result is complicated, but like this,

E =
3
√
3

8
√

2bq
(ρ1 + ρ2)3/2 ×

(
1 +

A

`2

)
where

A ≡ 2bq
3(ρ1 + ρ2)

(
sin2(p0) +

ρ1

ρ1 + ρ2

)
> 0

• So making the period larger is energetically favourable! The
period for the ground state configuration becomes the
(longer) period of the torus!
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Comments

• You can compute the lowest energy and it scales like J3/2

again.

• You can also compute two-point functions to see the direct
effect on inhomogeneity on observables.
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Inhomogeneity of the ground states and Goldstone counting

• We can actually prove several cute facts about inhomogeneity
using Goldstone counting.

• The symmetry is first explicitly broken by adding chemical
potential, which then is spontaneously broken by the solution
to the EOM itself.

• For example, we can actually prove that the ground state for
the O(2) model at large charge must be homogeneous.
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Homogeneity: O(2) at large charge

• We can prove the homogeneity of the ground state at large
charge of the O(2) model even without resorting to a
complicated argument like explicit breaking or anything.

• Assume otherwise; then in the EFT there are two or more
GBs, namely, the axion and the GB(s) from the translational
symmetry breaking.

• But you started from a theory of a complex scaler, whose dof
is two.

• Then the EFT should contain less than two dof, which would
contradict with the presence of the translational GB(s).
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Inhomogeneity: O(4) at large charge

• We prove that the ground state configuration is still
homogeneous if you only excite only one of the two Cartans,
i.e., ρ1 = ρ and ρ2 = 0.

• One easy way to see the breaking pattern caused by this
constraint is to think of what transformations preserve the
condition ρ2 = 0.

• The condition is equivalent to q1 = q2. The symmetry actions
that preserve this condition is just either overall phase
rotation or the elements of diagonal SU(2).
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Inhomogeneity: O(4) at large charge

• So theexplicit breaking from the chemical potential becomes

SU(2)× SU(2)
explicit breaking−−−−−−−−−→ U(1)× SU(2)

• Then we solve the EOM to find ω1 = ω2. Then one of the

vacuum configuration becomes

(
1
0

)
so the spontaneous

breaking pattern is

U(1)× SU(2)
spontaneous breaking−−−−−−−−−−−−→ U(1)

assuming the homogeneity of the configuration.
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Inhomogeneity: O(4) at large charge

• Because dim(U(1)× SU(2)/U(1)) = 3, if the translational
symmetry is further broken, there are four or more Goldstone
modes in the system.

• But there are only three light real fields in the spectrum, so
this cannot happen.

• We now have proven that the large charge ground state
configuration where only one Cartan is excited is
homogeneous!
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Inhomogeneity: O(4) at large charge

• We now prove that the ground state configuration becomes
inhomogeneous only in one direction even if you generically
excite two Cartans, i.e., ρ1, ρ2 6= 0

• The explicit breaking from the chemical potential is

SU(2)× SU(2)
explicit breaking−−−−−−−−−→ U(1)× U(1)

• Then we solve the EOM, but you already know from Gaume
et.al., that the configuration cannot be homogeneous.

• Assume the inhomogeneity in only one direction. The
spontaneous breaking pattern is then

U(1)× U(1)× {translation}
spontaneous breaking−−−−−−−−−−−−→ {trivial}
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Inhomogeneity: O(4) at large charge

• The dimension of the coset is, again, 3. So now if the
translational symmetry is further broken, there are four or
more Goldstone modes in the system

• But there are only three light real fields in the spectrum, so
this cannot happen.

• So we now have established that the large charge ground state
configuration where two Cartans are excited is only
homogeneous in one direction!
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Take-home messages

• Large charge expansion is interesting, and makes it possible to
analyse a strongly-coupled theory like a weakly-coupled one.
• This analysis is largely dependent on large separation of UV

and IR energies.
• Sometimes the ground state configuration at large charge is

inhomogeneous, but in our examples the inhomogeneity is at
the scale of the underlying geometry itself, and the EFT is still
applicable.
• You can directly extract interesting information from the

inhomogeneity, such as two-point functions.
• The inhomogeneity is the spontaneous breaking of the

translation symmetry, and it is possible to analyse the
breaking pattern by matching the number of Goldstones with
the available light modes in EFT.
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