Phase Transitions in the BMN Matrix Model

Yuhma Asano (Dublin IAS) 6 Apr 2018 @IPMU

This talk is based on the collaboration with
V. Filev, S. Kovacik, D. O'Connor,

Outline

1. Introduction

2. Deconfinement phase transition
3. Lattice simulation
4. Summary and Discussion

1. Introduction

Motivation

Quantum theory of gravitation

String/M theory

But

String theory is defined based on perturbation theory. We need non-perturbative formulation.

Matrix Models $\begin{gathered}\text { [Banks-Fischler-Shenker-Susskind '96, } \\ \text { Ishibashi-Kawai-Kitazawa-Tsuchiya '96, ...] }\end{gathered}$

- The target space is regularised by matrices.
- Branes are naturally included.
- Some matrix models have gauge/gravity duality.

> "Matrices = Strings"

1. Introduction

Emergent geometry in matrix models

1. Introduction

Emergent geometry in matrix models

high energy scale

geometry

low energy scale

We choose the temperature as the energy scale.

In this talk, we focus on the thermal BMN matrix model

1. Introduction

The action of membrane theory:

$$
S=-T_{\mathrm{M} 2} \int d^{3} \sigma \sqrt{-\operatorname{det}\left[g_{M N}(X) \partial_{\mu} X^{M} \partial_{\nu} X^{N}\right]}+T_{\mathrm{M} 2 \int} \int C_{3}
$$

plane-wave geometry:

$$
\begin{aligned}
& g_{M N} d x^{M} d x^{N}=-2 d x^{+} d x^{-}+d x^{i} d x^{i}-\left(\frac{\mu^{2}}{9} x^{a} x^{a}+\frac{\mu^{2}}{36} x^{m} x^{m}\right) d x^{+} d x^{+} \\
& C_{3}=\frac{\mu}{6} \epsilon_{a b c} x^{a} d x^{b} d x^{c} d x^{+} \quad i=1, \ldots, 9 \quad a=1,2,3 \quad m=4, \ldots, 9
\end{aligned}
$$

1. Introduction

The action of membrane theory:

$$
\begin{array}{ll}
S=\frac{p^{+}}{8 \pi} \int d^{3} \sigma\left[\left(D_{0} X^{i}\right)^{2}-\frac{\mu^{2}}{9}\left(X^{a}\right)^{2}-\frac{\mu^{2}}{36}\left(X^{m}\right)^{2}-\frac{8 \pi^{2} T_{\mathrm{M} 2}^{2}}{\left(p^{+}\right)^{2}}\left\{X^{i}, X^{j}\right\}^{2}\right] \\
& +T_{\mathrm{M} 2} \int d^{3} \sigma \mu X^{1}\left\{X^{2}, X^{3}\right\}
\end{array}
$$

$$
\text { Matrix regularisation } \begin{cases}\frac{1}{4 \pi} \int d^{2} \sigma \rightarrow \frac{1}{N} \operatorname{Tr} & \{,\} \rightarrow \frac{-i N}{2}[,] \\ X^{i}\left(\sigma^{\mu}\right) \rightarrow \hat{X}^{i}\left(\sigma^{0}\right) & A\left(\sigma^{\mu}\right) \rightarrow \frac{2}{N} \hat{A}\left(\sigma^{0}\right)\end{cases}
$$

$$
\left.\begin{array}{llr}
S=\frac{p^{+}}{2 N} \int d \sigma^{0} \operatorname{Tr}\left[\left(D_{0} X^{i}\right)^{2}-\frac{\mu^{2}}{9}\left(X^{a}\right)^{2}-\frac{\mu^{2}}{36}\left(X^{m}\right)^{2}\right. & c=\frac{2 \pi N T_{\mathrm{M} 2}}{p^{+}} \\
& +\frac{c^{2}}{2}\left[X^{i}, X^{j}\right]^{2}-2 i c \mu X^{1}\left[X^{2}, X^{3}\right]
\end{array}\right]
$$

Bosonic BMN model
plane-wave geometry:

$$
\begin{aligned}
& g_{M N} d x^{M} d x^{N}=-2 d x^{+} d x^{-}+d x^{i} d x^{i}-\left(\frac{\mu^{2}}{9} x^{a} x^{a}+\frac{\mu^{2}}{36} x^{m} x^{m}\right) d x^{+} d x^{+} \\
& C_{3}=\frac{\mu}{6} \epsilon_{a b c} x^{a} d x^{b} d x^{c} d x^{+} \quad i=1, \ldots, 9 \quad a=1,2,3 \quad m=4, \ldots, 9
\end{aligned}
$$

1. Introduction

Rescale X^{i} and σ^{0} to \tilde{X}^{i} and t

$$
a, b=1,2,3, \quad m, n=4, \ldots, 9
$$

Action of the BMN matrix model:

$$
\begin{aligned}
S=N \int d t \operatorname{Tr}\left[\frac{1}{2}\left(D_{t} \tilde{X}^{a}\right)^{2}+\frac{1}{2}\left(D_{t} \tilde{X}^{m}\right)^{2}\right. & -\frac{1}{4}\left(\frac{\mu}{3} \epsilon_{a b c} \tilde{X}^{c}-i\left[\tilde{X}^{a}, \tilde{X}^{b}\right]\right)^{2}+\frac{1}{2}\left[\tilde{X}^{a}, \tilde{X}^{n}\right]^{2} \\
& \left.+\frac{1}{4}\left[\tilde{X}^{m}, \tilde{X}^{n}\right]^{2}-\frac{\mu^{2}}{72} \tilde{X}^{m} \tilde{X}^{m}+\text { fermions }\right]
\end{aligned}
$$

- Symmetry: $\tilde{S U}(2 \mid 4) \supset R \times S O(3) \times S O(6)$
[Berenstein-Maldacena-Nastase '02]
- Obtained by dimensional reduction of 4D $\mathcal{N}=4$ super Yang-Mills

1D super quantum mechanics

Vacua: $S U(2)$ generators

$$
\begin{aligned}
\tilde{X}^{a} & \left.=-\frac{\mu}{3}\left(1 N_{2}\right) \otimes L_{a}^{N_{5}}\right) \\
\tilde{X}^{m} & =0 \quad \begin{array}{l}
L_{a}{ }^{\left[N_{5}\right]}: \text { representation matrix of dim. } N_{5} \\
N_{2}: \text { multiplicity of this rep. }
\end{array} \\
& \text { Number of M5-branes }
\end{aligned}
$$

1. Introduction

i) Matrix regularisation of super-membrane theory on the plane-wave background

Nonperturbative formulation of M-theory (11D SUGRA)
[deWit-Hoppe-Nicolai '88, Banks-Fischler-Shenker-Susskind '96]

+ M2-brane realisation: fuzzy 2-sphere
+M5-brane realisation: $S O(6)$ part (quantum effect)
A BPS sector realises the geometries at strong coupling.
[Y.A.-Ishiki-Shimasaki-Terashima '17]

ϕ : a BPS operator considered to be the low energy moduli
[Goro's talk]

1. Introduction

ii) Gauge/gravity dual to IIA SUGRA

 on bubbling geometries
Vacua BMN matrix model

symmetry: $R \times S O(3) \times S O(6)$ vacua ($S U(2)$ rep.)

- dim. of irreducible rep.
- multiplicity of irred. rep.

Geometries IIA SUGRA

isometry: $R \times S O(3) \times S O(6)$
bubbling geometries

- NS5 charge N_{5}
- D2 charge N_{2}

Part of Einstein equation was obtained by ϕ in the BMN model. nontrivial part in terms of the isometry
[Y.A.-Okada-Ishiki-Shimasaki '14]

1. Introduction

We have some understanding of the emergent geometries.

Can we see the emergence as we decrease the temperature?
Let's look at phase transitions.

2. Deconfinement phase transition

There is a "deconfinement" phase transition at large- N.

At large μ, the theory becomes gauged harmonic oscillators.
One-loop integration

$$
\begin{aligned}
& \beta F= \sum_{i, j}\left(3 \ln \left|1-e^{-\frac{\beta \mu}{3}+i \theta_{i j}}\right|+6 \ln \left|1-e^{\left.-\frac{\beta \mu}{6}+i \theta_{i j} \right\rvert\,}\right|-8 \ln \left|1+e^{-\frac{\beta \mu}{4}+i \theta_{i j}}\right|\right) \\
&-\sum_{i, j \neq i} \ln \left|1-e^{i \theta_{i j}}\right| \\
&=\sum_{n=1}^{\infty}\left(\frac{1}{n} \underline{\left.\left\{1-3 e^{-n \frac{\beta \mu}{3}}-6 e^{-n \frac{\beta \mu}{6}}+8(-)^{n} e^{-n \frac{\beta \mu}{4}}\right\}\left|u_{n}\right|^{2}\right)-\sum_{n=1}^{\infty} \frac{N}{n}}\right.
\end{aligned}
$$

$$
A=\operatorname{diag}\left(\frac{\theta_{1}}{\beta}, \cdots, \frac{\theta_{N}}{\beta}\right) \quad \theta_{i j}:=\theta_{i}-\theta_{j} \quad u_{n}:=\sum_{j=1}^{N} e^{i n \theta_{j}}
$$

2. Deconfinement phase transition

$$
\beta F=\sum_{n=1}^{\infty}\left(\frac{1}{n} \underline{\left.\left\{1-3 e^{-n \frac{\beta \mu}{3}}-6 e^{-n \frac{\beta \mu}{6}}+8(-)^{n} e^{-n \frac{\beta \mu}{4}}\right\}\left|u_{n}\right|^{2}\right) .}\right.
$$

$$
\text { positive at low enough temperatures }\left|u_{n}\right|=0
$$

Gross-Witten $\quad F=0$
transition

$$
\begin{array}{cc}
1-3 e^{-\frac{\beta \mu}{3}}-6 e^{-\frac{\beta \mu}{6}}-8 e^{-\frac{\beta \mu}{4}}<0 & \left|u_{1}\right|>0 \\
\text { [Furuuchi-Schreiber-Semenoff '03] } & F \sim O\left(N^{2}\right)
\end{array}
$$

Critical temperature of the deconfinement transition:

$$
T_{c}=\beta_{c}^{-1}=\frac{\mu}{12 \ln 3}\left(1+\frac{2^{6} \cdot 5}{3 \mu^{3}}+O\left(\mu^{-6}\right)\right)
$$

$P=u_{1} / N$ is the order parameter.
coming from higher loops
(Polyakov loop)
[Spradlin-Raamsdonk-Volovich '04,
Hadizadeh-Ramadanovic-Semenoff-Young '04]

$$
A=\operatorname{diag}\left(\frac{\theta_{1}}{\beta}, \cdots, \frac{\theta_{N}}{\beta}\right) \quad \theta_{i j}:=\theta_{i}-\theta_{j} \quad u_{n}:=\sum_{j=1}^{N} e^{i n \theta_{j}}
$$

2. Deconfinement phase transition

At small μ \& high $T \approx$ non-extremal black 0-brane (D0-branes at high T)
\sim plane-wave geom. with $R \times S O(3) \times S O(6)$ at infinity

By regularity being imposed, the geometry dual to the thermal BMN with $U(1)_{M} \times R \times S O(3) \times S O(6)$ isometry,
with perturbative μ-deformation, and with the simplest horizon topology ($S^{1} \times S^{8}$)
was computed.
\leftrightarrow trivial vac. $X_{a}=0$
Critical temperature from the gravity side:

$$
\frac{T_{c}}{\mu}=0.105905(57)
$$

2. Deconfinement phase transition

predicted phase diagram

It should have a rich structure at low temperatures, which should reflect geometrical information.

3. Lattice simulation

Computer simulations for Matrix theories

BFSS model ($\mu=0$)

- Consistency with $E \sim T^{14 / 5}$, no confinement phase transition
[Anagnostopoulos-Hanada-Nishimura-Takeuchi '07, Catterall-Wiseman '07, '08]
- α^{\prime} (low-T) correction (non-lattice) [Hanada-Hyakutake-Nishimura-Takeuchi '08]
- Quantum (1/N) correction (non-lattice)[Hanada-Hyakutake-Ishiki-Nishimura '13]
- Further consistency checks of gravity prediction (lattice)
[Kadoh-Kamata '15, Filev-O'Connor '15]
- Reproduced the coeff. in the first term: $E=7.41 T^{14 / 5}$ (lattice)
[Berkowiz-Rinaldi-Hanada-Ishiki-Shimasaki-Vranas '16]
BMN model (finite μ)
- Observed the deconfinement phase transition

3. Lattice simulation

Polyakov loop:

$$
(\mu=5, \Lambda=24, N=11)
$$

Myers term:
$\sim\left\langle\operatorname{Tr}\left(i X_{1}\left[X_{2}, X_{3}\right]\right)\right\rangle$

※ $S O(3)$ Casimir is also good to detect the transition.

4. Lattice simulation

$$
\sim \operatorname{Tr}\left[X_{i} X_{i}\right] / N
$$

$$
(\mu=6, \beta=1.45, \Lambda=24, N=8)
$$

Fluctuating between different Levels, $\mu=6.0$

3. Lattice simulation

The simulation results agree with theoretical predictions.

4. Summary and Discussion

- We observed two phase transitions: the deconfinement transition and the $S O(3)$ transition. They don't merge at least finite Λ and N at $2 \leq \mu \leq 7.5$.

Geometrical interpretation:

- Is the $S O(3)$ transition "M5 $\rightarrow \mathrm{M} 2$ " or "no geometry $\rightarrow S^{2}$ "?

Gauge/gravity:

- The critical temperature of the deconfinement transition looks dependent on $S U(2)$ rep. By keeping the state at the trivial vacuum $X_{a}=0$, we should get the deconfinement transition much closer to the gravity prediction.
- The gravity dual at zero temperature has many bubbling solutions, which correspond to vacua in the BMN model. We expect a richer structure at lower temperatures, which should reflect geometrical information.

