EFFECT OF DARK ENERGY PERTURBATION ON COSMIC VOIDS FORMATION (SUBMITTED TO MNRAS...)

Graduate School of Science, Nagoya University

Cosmology group, Takao ENDO

Collaborating with Atsushi J. NISHIZAWA, Kiyotomo ICHIKI

Dark Energy

The condition for the acceleration

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\bar{\rho} + 3\bar{P}) > 0 \implies w_{\rm DE} = \frac{\bar{P}}{\bar{\rho}} < -\frac{1}{3}$$

Planck 2015,

Dark Energy

 $w = -1.019^{+0.075}_{-0.080}$ *Planck* TT, TE, EE+lowP+lensing+ext.

- Cosmological Constant
 Quintessence
 k-essence
 etc...

How do we distinguish dark energy models?

The large scale structure and void

✓ The effect of dark energy should be imprinted on large scale structures.

 ✓ Voids are low matter density regions.
 → They are one of the "largest" structures (~10s Mpc)
 → They are regarded as "clean" objects to observe the effect of DE.

(Weygaert, 2014)

✓ Our aim

To investigate effects of DE models on void properties

credit:SDSS

Dark Energy and Cosmic Voids

Previous works

• Shape(ellipticity)

Park & Lee (2007), Lee & Park (2009), Lavaux & Wandelt (2010) Biswas et al. (2010), Bos et al. (2012)

- Size distribution (Sheth & Weygaert, (2004)) Pisani et al. (2015)

Our work

- Allow DE to be perturbed spatially $(c_s^2 < 1)$
- Focusing on size (isolated void, distribution)

Set up

- Our set up
 - Isolated
 - Spherical
 - Top-hat(bucket) profile

- Voids in real
 - Not isolated
 - Not spherical
 - Smooth density profile

Set up

- Our set up
 - Isolated
 - Spherical
 - Top-hat(bucket) profile

calculation set up

$$\begin{split} \Omega_{\mathrm{m},0} &= 0.3\\ \Omega_{\mathrm{de},0} &= 0.7\\ H_0 &= 70 \; [\mathrm{km/s/Mpc}]\\ \delta_{\mathrm{m},i} &= -5.0 \times 10^{-4}\\ \delta_{\mathrm{DE},i} &\propto \delta_{\mathrm{m},i}\\ 0 &\leq c_s^2 < 1\\ w \neq -1 \end{split}$$

Evolution equations (comoving coordinate:Basse et al. (2011))

$$\begin{aligned} \frac{X''}{X} + \mathcal{H}\frac{X'}{X} &= -\frac{4\pi G}{3}a^2 \left[\bar{\rho}_{\rm m}\delta_{\rm m}^{\rm TH} + \bar{\rho}_{\rm de}\delta_{\rm de}^{\rm TH} + 3\delta P_{\rm de}^{\rm TH}\right]\\ \text{where } X &= \frac{R}{a}, \ (') = \frac{d}{d\tau} = a\frac{d}{dt}, \ \mathcal{H} = aH\\ \text{matter } M &= \frac{4\pi}{3}\bar{\rho}_{\rm m}(1+\delta_{\rm m}^{\rm TH})R^3 = \text{constant}\\ & & & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} \delta_{\rm m}^{\rm TH} = (1+\delta_{\rm m,i}^{\rm TH})\left[\frac{X_i}{X}\right]^3 - 1\\ \text{dark energy} \begin{bmatrix} \rho_{\rm de}' + 3\mathcal{H}(\rho_{\rm de} + P_{\rm de}) + \nabla \cdot \left[(\rho_{\rm de} + P_{\rm de})\vec{v}_{\rm de}\right] = 0\\ \vec{v}_{\rm de}' + \mathcal{H}\vec{v}_{\rm de} + (\vec{v}_{\rm de} \cdot \nabla)\vec{v}_{\rm de} + \frac{\nabla P_{\rm de} + \vec{v}_{\rm de}\dot{P}_{\rm de}}{\rho_{\rm de} + P_{\rm de}} + \nabla\phi = 0\\ \nabla^2\phi &= 4\pi Ga^2 \left[\bar{\rho}_{\rm m}\delta_{\rm m}^{\rm TH} + \bar{\rho}_{\rm de}\delta_{\rm de}^{\rm TH} + 3\delta P_{\rm de}^{\rm TH}\right] \end{aligned}$$

Results for an isolate void

Effects of various sound speed on the evolution of void radius. For w = -0.9, small value of sound speed promotes the evolution, while for w=-1.3 it suppresses the evolution. At a = 1, the maximum deviation is around 0.1%

Dark Energy perturbation in Fourier space

Void size function

Void size function: Sheth & Weygaert (2004)

$$\frac{dn}{dR} = (1+\delta_m)^{1/3} \frac{3}{4\pi R_L^3} f(\nu, \delta_v, \delta_c) \frac{d\nu}{dR_L}$$

$$f(\nu) \approx \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\nu^2}{2}\right) \exp\left(-\frac{|\delta_v|}{\delta_c}\frac{\mathcal{D}^2}{4\nu^2} - 2\frac{\mathcal{D}^4}{\nu^4}\right)$$

$$\nu = \frac{|\delta_v|}{\sigma(R_L)} \qquad \mathcal{D} = \frac{|\delta_v|}{\delta_c + \delta_v} \qquad \delta_c = 1.69$$

$$\sigma^2(R_L) = \int \frac{k^2 dk}{2\pi^2} \tilde{W}(kR_L) P(k)$$
DE perturbation CAMB(Lewis et al. 2000)

Sheth & Weygaert (2004)

Formation of voids

• Void shell crossing condition (EdS model): Blumenthal et al. (1992)

$$\delta R = \frac{\delta R_i}{2|\delta_{\mathrm{m},i}|} (\cosh \theta - 1) \left(1 - \frac{\partial \ln |\delta_{\mathrm{m},i}|}{\partial \ln R_i} \left[1 + \frac{3}{2} \frac{\sinh \theta \cdot (\sinh \theta - \theta)}{(\cosh \theta - 1)^2} \right] \right)$$
$$\delta R = 0 \Rightarrow \delta_{\mathrm{m,sc}} \simeq -0.8$$

variance (a=1)

For w = -0.9 dark energy perturbation enhances the variance while it suppresses for w = -1.3

Results for void abundance (a=1)

Effects of various sound speed on the evolution of void radius.

For w = -0.9, small value of sound speed increases the number of large voids, while for w=-1.3 it decreases.

At R = 30 Mpc, the maximum deviation is around 20%

Summary

- we characterize dark energy in terms of its constant equation of state and sound speed.
- For calculation, we adopt spherical model for an isolate void and excursion set theory for void abundance.
- The maximum deviation from homogeneous dark energy model is about 0.1 % at present time for the isolate void
- When w=-0.9 dark energy perturbation works to promote the evolution of void radius while for w= -1.3 it works opposite direction.
- For void abundance, the maximum deviation is more than 20% at the void radius of 30 Mpc.
- At large scale, in case of w=-0.9 dark energy perturbation increases the number of voids, while w =-1.3, it decreases.